
The chain rule
Based on lecture notes by James McKernan

Theorem 1 (Chain Rule). Let U ⊂ Rn and let V ⊂ Rm be two open subsets.
Let f : U −→ V and g : V −→ Rp be two functions. If f is differentiable at p and
g is differentiable at q = f(p), then g ◦ f : U −→ Rp is differentiable at p, with
derivative:

D(g ◦ f)(p) = (D(g)(q))(D(f)(p)).

It is interesting to untwist this result in specific cases. Suppose we are given

f : R −→ R2 and g : R2 −→ R.

So f(x) = (f1(x), f2(x)) and g = g(y, z). Then

Df(p) =

(
df1
dx (p)
df2
dx (p)

)
and Dg(q) = (

∂g

∂y
(q),

∂g

∂z
(q)).

So

d(g ◦ f)

dx
= D(g ◦ f)(p) = Dg(q)Df(p) =

∂g

∂y
(q)

df1
dx

(p) +
∂g

∂z
(q)

df2
dx

(p).

Example 2. Suppose that f(x) = (x2, x3) and g(y, z) = yz. If we apply the chain
rule, we get

D(g ◦ f)(x) = z(2x) + y(3x2) = 5x4.

On the other hand (g ◦ f)(x) = x5, and of course

dx5

dx
= 5x4.

In general, if f = f(x1, . . . , xn) and g = g(y1, . . . , yn) then the (i, k) entry of
D(g ◦ f)(p), that is

∂(g ◦ f)i
∂xk

is given by the dot product of the ith row of Dg(q) and the kth column of Df(p),

∂(g ◦ f)i
∂xk

=

m∑
j=1

∂gi
∂yj

(q)
∂fj
∂xk

(p).

If y = f(x) and z = g(y) then we get

∂zi
∂xk

=

m∑
j=1

∂zi
∂yj

∂yj
∂xk

.

We can use the chain rule to prove some of the simple rules for derivatives.
Suppose that we have

f : Rn −→ Rm and g : Rn −→ Rm.

Suppose that f and g are differentiable at p. What about f + g? Well there is
a function

a : R2m −→ Rm,
which sends (~u,~v) ∈ Rm×Rm to the sum ~u+~v. In coordinates (u1, u2, . . . , um, v1, v2, . . . , vm),

a(u1, u2, . . . , um, v1, v2, . . . , vm) = (u1 + v1, u2 + v2, . . . , um + vm).
1



2

Now a is differentiable (it is a polynomial, linear even). There is function

h : Rn −→ R2m,

which sends q to (f(q), g(q)). The composition a ◦ h : Rn −→ Rm is the function
we want to differentiate, it sends p to f(p) + g(p). The chain rule says that that
the function is differentiable at p and

D(f + g)(p) = Df(p) +Dg(p).

Now suppose that m = 1. Instead of a, consider the function

m : R2 −→ R,

given by m(x, y) = xy. Then m is differentiable, with derivative

Dm(x, y) = (y, x).

So the chain rule says the composition of h and m, namely the function which sends
p to the product f(p)g(p) is differentiable and the derivative satisfies the usual rule

D(fg)(p) = g(p)D(f)(p) + f(p)D(g)(p).

Here is another example of the chain rule, suppose

x = r cos θ

y = r sin θ.

Then

∂f

∂r
=
∂f

∂x

∂x

∂r
+
∂f

∂y

∂y

∂r

=
∂f

∂x
cos θ +

∂f

∂y
sin θ.

Similarly,

∂f

∂θ
=
∂f

∂x

∂x

∂θ
+
∂f

∂y

∂y

∂θ

= −∂f
∂x
r sin θ +

∂f

∂y
r cos θ.

We can rewrite this as(
∂
∂r
∂
∂θ

)
=

(
cos θ sin θ
−r sin θ r cos θ

)( ∂
∂x
∂
∂y

)
Now the determinant of (

cos θ sin θ
−r sin θ r cos θ

)
is

r(cos2 θ + sin2 θ) = r.

So if r 6= 0, then we can invert the matrix above and we get( ∂
∂x
∂
∂y

)
=

1

r

(
r cos θ − sin θ
r sin θ cos θ

)(
∂
∂r
∂
∂θ

)
We now turn to a proof of the chain rule. We will need:
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Lemma 3. Let A ⊂ Rn be an open subset and let f : A −→ Rm be a function.
If f is differentiable at p, then there is a δ > 0 such that if ‖q − p‖ < δ, then

‖f(q)− f(p)‖ < (K + 1)‖q − p‖,
where K is the Frobenius norm of Df(p).

Proof. As f is differentiable at p, there is a constant δ > 0 such that if ‖q− p‖ < δ,
then

‖f(q)− f(p)−Df(p)(q − p)‖
‖q − p‖

< 1.

Hence
‖f(q)− f(p)−Df(p)(q − p)‖ < ‖q − p‖.

But then

‖f(q)− f(p)‖ = ‖f(q)− f(p)−Df(p)(q − p) +Df(p)(q − p)‖
≤ ‖f(q)− f(p)−Df(p)(q − p)‖+ ‖Df(p)(q − p)‖
≤ ‖(q − p)‖+K‖(q − p)‖
= (K + 1)‖(q − p)‖,

�

Proof of (1). Let’s fix some notation. We want the derivative at p. Let q = f(p).
Let p′ be a point in U (which we imagine is close to p). Finally, let q′ = f(p′) (so
if p′ is close to p, then we expect q′ to be close to q).

The trick is to carefully define an auxiliary function G : V −→ Rp,

G(q′) =

{
g(q′)−g(q)−Dg(q)(q′−q)

‖q′−q‖ if q′ 6= q

~0 if q′ = q.

Then G is continuous at q = f(p), as g is differentiable at q. Now,

(g ◦ f)(p′)− (g ◦ f)(p)−Dg(q)Df(p)(p′ − p)
‖p′ − p‖

=
Dg(q)(f(p′)− f(p))−Dg(q)(q′ − q) + g(q′)− g(q)−Dg(q)Df(p)(p′ − p)

‖p′ − p‖

= Dg(q)
f(p′)− f(p)−Df(p)(p′ − p)

‖p′ − p‖
+
g(q′)− g(q)−Dg(q)(q′ − q)

‖p′ − p‖

= Dg(q)
f(p′)− f(p)−Df(p)(p′ − p)

‖p′ − p‖
+G(f(p′))

‖f(p′)− f(p)‖
‖p′ − p‖

.

As p′ approaches p, note that

f(p′)− f(p)−Df(p)(p′ − p)
‖p′ − p‖

,

and G(p′) both approach zero and

‖f(p′)− f(p)‖
‖p′ − p‖

≤ K + 1.

So then
(g ◦ f)(p′)− (g ◦ f)(p)−Dg(q)Df(p)(p′ − p)

‖p′ − p‖
,

approaches zero as well, which is what we want. �


