THE CHAIN RULE
BASED ON LECTURE NOTES BY JAMES MCKERNAN

Theorem 1 (Chain Rule). Let U C R"™ and let V. C R™ be two open subsets.
Let f: U —V and g: V — RP be two functions. If [ is differentiable at p and
g 1is differentiable at ¢ = f(p), then go f: U — RP is differentiable at p, with
derivative:

D(g o f)(p) = (D(9)(0))(D(f)(p))-
It is interesting to untwist this result in specific cases. Suppose we are given
f:R—R? and g:R? — R.
So f(z) = (f1(x), folx)) and g = g(y, 2). Then

df1
So
% = D(go f)(p) = Dg(q)Df(p) = %(Q)%(p) . %(Q)%(p)-

Example 2. Suppose that f(x) = (2%, 2°) and g(y,z) = yz. If we apply the chain

rule, we get
D(go f)(:c) 2(2x) + y(32?) = ba*.

On the other hand (go f)(x) = 25, and of course

dad 4

o 5=,

In general, if f = f(x1,...,2,) and g = g(y1,...,yn) then the (i,k) entry of
D(go f)(p), that is
d(gof)i
(9xk

is given by the dot product of the ith row of Dg(gq) and the kth column of D f(p),

Z 891 8fj
8ack ay] 8xk

If y = f(z) and z = g(y) then we get

0z; 0z; 8yj
oxy, Z 3yJ oxy

We can use the chain rule to prove some of the simple rules for derivatives.
Suppose that we have
f:R" — R™ and g: R" — R™.

Suppose that f and g are differentiable at p. What about f + g7 Well there is
a function
a: R*™ — R™

—

which sends (@, 7) € R™XxR™ to the sum @+%¥. In coordinates (u1, ug, . .., Um, V1, V2, . ..

a(U1, U2, ooy U, V1, V2,5« o, V) = (U1 + 01, U2 + V2,500, Uy + V).
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Now a is differentiable (it is a polynomial, linear even). There is function
h: R" — R*™,

which sends ¢ to (f(q),g(¢q)). The composition a o h: R® — R™ is the function
we want to differentiate, it sends p to f(p) + g(p). The chain rule says that that
the function is differentiable at p and

D(f +g)(p) = Df(p) + Dy(p).
Now suppose that m = 1. Instead of a, consider the function
m: R? — R,
given by m(z,y) = xy. Then m is differentiable, with derivative

Dm(z,y) = (y, ).

So the chain rule says the composition of A and m, namely the function which sends
p to the product f(p)g(p) is differentiable and the derivative satisfies the usual rule

D(f9)(p) = 9(P)D(f)(p) + f(p)D(9)(p)-

Here is another example of the chain rule, suppose

T = rcosf
y=rsind.

Then
o1 _0for 01y
or OxJdr QOyor
of of .

= —~cosf + =—sinb.

ox Jy
Similarly,
o5 _o70x 050y

00 — dx 00 ' By 00
of . of 0

= ——7rsinf + =—rcos

ox oy

We can rewrite this as
% _ cos sin 6 %
20 —rsinf rcosf e

Now the determinant of
cosf sin 0
—rsinf rcosf

r(cos® 6 +sin® ) = r.

is

So if r # 0, then we can invert the matrix above and we get

% :1 TC?SH —sin® %
3y r \rsinf cos6 a%

We now turn to a proof of the chain rule. We will need:



Lemma 3. Let A C R™ be an open subset and let f: A — R™ be a function.
If f is differentiable at p, then there is a § > 0 such that if ||¢ — p|| < J, then

1F(q) = F)I < (K + Dllg = pll;
where K is the Frobenius norm of Df(p).

Proof. As f is differentiable at p, there is a constant § > 0 such that if ¢ — p|| < 9,

then
1f(e) = f0) = Dfp)a =D)Il _
g — pll '
Hence
1f(q) = f(p) = Df()(g—p)Il < llg —pll
But then

1f(q) = f(p)l = lf(a) — f(p) = Df(p)(a — p) + Df(p)(q — D)
<|f(e) = f(p) = Df(p)(a =) + IDf(p)(q =)l
< g =pll+Kl(qg—p)l
= (E +Dl(g—p)ll,
[
Proof of (1). Let’s fix some notation. We want the derivative at p. Let ¢ = f(p).
Let p’ be a point in U (which we imagine is close to p). Finally, let ¢’ = f(p’) (so

if p’ is close to p, then we expect ¢’ to be close to ¢q).
The trick is to carefully define an auxiliary function G: V — RP,

{g(q/)—g(Q)—Dg(Q)(q'—q) if ¢ # ¢

g’ —qll

G(d) =
@) 0 if ¢ =q.

Then G is continuous at ¢ = f(p), as g is differentiable at g. Now,
(g0 f)@®') = (g f)(p) — Dg(q)Df(p)(p' — p)

I = pll
_ Dg(g)(f (') = f(p)) = Dyg(@)(¢' — q) + 9(¢') — 9(q) — Dg(¢)Df(p)(¥' — p)
Ip" = pl
- Dg(q)f(p’) — ) = DI@)@ —p) | 9(d) —9(a) — Dg(a)(q' ~ @)
Ip" = Pl I =7l
— Dy() T )= f<p|;I_1;f<p><p =2 L a6 W |

As p’ approaches p, note that
f@) = fp) = Df(p)(»" —p)

lp" = pll ’
and G(p') both approach zero and
IF ) = @I pe 4
I =pll  — '
So then
(9o f)®) — (9o f)(p) — Dg(a)Df(p)(p' — p)
lp" = pll ’

approaches zero as well, which is what we want. [



