The Chain RULE

Based on lecture notes by James McKernan
Theorem 1 (Chain Rule). Let $U \subset \mathbb{R}^{n}$ and let $V \subset \mathbb{R}^{m}$ be two open subsets. Let $f: U \longrightarrow V$ and $g: V \longrightarrow \mathbb{R}^{p}$ be two functions. If f is differentiable at p and g is differentiable at $q=f(p)$, then $g \circ f: U \longrightarrow \mathbb{R}^{p}$ is differentiable at p, with derivative:

$$
D(g \circ f)(p)=(D(g)(q))(D(f)(p))
$$

It is interesting to untwist this result in specific cases. Suppose we are given

$$
f: \mathbb{R} \longrightarrow \mathbb{R}^{2} \quad \text { and } \quad g: \mathbb{R}^{2} \longrightarrow \mathbb{R}
$$

So $f(x)=\left(f_{1}(x), f_{2}(x)\right)$ and $g=g(y, z)$. Then

$$
D f(p)=\binom{\frac{d f_{1}}{d_{x}}(p)}{\frac{d f_{2}}{d x}(p)} \quad \text { and } \quad D g(q)=\left(\frac{\partial g}{\partial y}(q), \frac{\partial g}{\partial z}(q)\right)
$$

So

$$
\frac{d(g \circ f)}{d x}=D(g \circ f)(p)=D g(q) D f(p)=\frac{\partial g}{\partial y}(q) \frac{d f_{1}}{d x}(p)+\frac{\partial g}{\partial z}(q) \frac{d f_{2}}{d x}(p)
$$

Example 2. Suppose that $f(x)=\left(x^{2}, x^{3}\right)$ and $g(y, z)=y z$. If we apply the chain rule, we get

$$
D(g \circ f)(x)=z(2 x)+y\left(3 x^{2}\right)=5 x^{4}
$$

On the other hand $(g \circ f)(x)=x^{5}$, and of course

$$
\frac{d x^{5}}{d x}=5 x^{4}
$$

In general, if $f=f\left(x_{1}, \ldots, x_{n}\right)$ and $g=g\left(y_{1}, \ldots, y_{n}\right)$ then the (i, k) entry of $D(g \circ f)(p)$, that is

$$
\frac{\partial(g \circ f)_{i}}{\partial x_{k}}
$$

is given by the dot product of the i th row of $D g(q)$ and the k th column of $D f(p)$,

$$
\frac{\partial(g \circ f)_{i}}{\partial x_{k}}=\sum_{j=1}^{m} \frac{\partial g_{i}}{\partial y_{j}}(q) \frac{\partial f_{j}}{\partial x_{k}}(p)
$$

If $y=f(x)$ and $z=g(y)$ then we get

$$
\frac{\partial z_{i}}{\partial x_{k}}=\sum_{j=1}^{m} \frac{\partial z_{i}}{\partial y_{j}} \frac{\partial y_{j}}{\partial x_{k}}
$$

We can use the chain rule to prove some of the simple rules for derivatives. Suppose that we have

$$
f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \quad \text { and } \quad g: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}
$$

Suppose that f and g are differentiable at p. What about $f+g$? Well there is a function

$$
a: \mathbb{R}^{2 m} \longrightarrow \mathbb{R}^{m}
$$

which sends $(\vec{u}, \vec{v}) \in \mathbb{R}^{m} \times \mathbb{R}^{m}$ to the sum $\vec{u}+\vec{v}$. In coordinates $\left(u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{m}\right)$,

$$
a\left(u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{m}\right)=\left(u_{1}+v_{1}, u_{2}+v_{2}, \ldots, u_{m}+v_{m}\right)
$$

Now a is differentiable (it is a polynomial, linear even). There is function

$$
h: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{2 m}
$$

which sends q to $(f(q), g(q))$. The composition $a \circ h: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is the function we want to differentiate, it sends p to $f(p)+g(p)$. The chain rule says that that the function is differentiable at p and

$$
D(f+g)(p)=D f(p)+D g(p)
$$

Now suppose that $m=1$. Instead of a, consider the function

$$
m: \mathbb{R}^{2} \longrightarrow \mathbb{R}
$$

given by $m(x, y)=x y$. Then m is differentiable, with derivative

$$
\operatorname{Dm}(x, y)=(y, x)
$$

So the chain rule says the composition of h and m, namely the function which sends p to the product $f(p) g(p)$ is differentiable and the derivative satisfies the usual rule

$$
D(f g)(p)=g(p) D(f)(p)+f(p) D(g)(p)
$$

Here is another example of the chain rule, suppose

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

Then

$$
\begin{aligned}
\frac{\partial f}{\partial r} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial r} \\
& =\frac{\partial f}{\partial x} \cos \theta+\frac{\partial f}{\partial y} \sin \theta
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\frac{\partial f}{\partial \theta} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta} \\
& =-\frac{\partial f}{\partial x} r \sin \theta+\frac{\partial f}{\partial y} r \cos \theta
\end{aligned}
$$

We can rewrite this as

$$
\binom{\frac{\partial}{\partial r}}{\frac{\partial}{\partial \theta}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right)\binom{\frac{\partial}{\partial x}}{\frac{\partial}{\partial y}}
$$

Now the determinant of

$$
\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right)
$$

is

$$
r\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=r
$$

So if $r \neq 0$, then we can invert the matrix above and we get

$$
\binom{\frac{\partial}{\partial x}}{\frac{\partial}{\partial y}}=\frac{1}{r}\left(\begin{array}{cc}
r \cos \theta & -\sin \theta \\
r \sin \theta & \cos \theta
\end{array}\right)\binom{\frac{\partial}{\partial r}}{\frac{\partial}{\partial \theta}}
$$

We now turn to a proof of the chain rule. We will need:

Lemma 3. Let $A \subset \mathbb{R}^{n}$ be an open subset and let $f: A \longrightarrow \mathbb{R}^{m}$ be a function.
If f is differentiable at p, then there is a $\delta>0$ such that if $\|q-p\|<\delta$, then

$$
\|f(q)-f(p)\|<(K+1)\|q-p\|
$$

where K is the Frobenius norm of $D f(p)$.
Proof. As f is differentiable at p, there is a constant $\delta>0$ such that if $\|q-p\|<\delta$, then

$$
\frac{\|f(q)-f(p)-D f(p)(q-p)\|}{\|q-p\|}<1
$$

Hence

$$
\|f(q)-f(p)-D f(p)(q-p)\|<\|q-p\|
$$

But then

$$
\begin{aligned}
\|f(q)-f(p)\| & =\|f(q)-f(p)-D f(p)(q-p)+D f(p)(q-p)\| \\
& \leq\|f(q)-f(p)-D f(p)(q-p)\|+\|D f(p)(q-p)\| \\
& \leq\|(q-p)\|+K\|(q-p)\| \\
& =(K+1)\|(q-p)\|
\end{aligned}
$$

Proof of (1). Let's fix some notation. We want the derivative at p. Let $q=f(p)$. Let p^{\prime} be a point in U (which we imagine is close to p). Finally, let $q^{\prime}=f\left(p^{\prime}\right)$ (so if p^{\prime} is close to p, then we expect q^{\prime} to be close to q).

The trick is to carefully define an auxiliary function $G: V \longrightarrow \mathbb{R}^{p}$,

$$
G\left(q^{\prime}\right)= \begin{cases}\frac{g\left(q^{\prime}\right)-g(q)-D g(q)\left(q^{\prime}-q\right)}{\left\|q^{\prime}-q\right\|} & \text { if } q^{\prime} \neq q \\ \overrightarrow{0} & \text { if } q^{\prime}=q\end{cases}
$$

Then G is continuous at $q=f(p)$, as g is differentiable at q. Now,

$$
\begin{aligned}
& \frac{(g \circ f)\left(p^{\prime}\right)-(g \circ f)(p)-D g(q) D f(p)\left(p^{\prime}-p\right)}{\left\|p^{\prime}-p\right\|} \\
& =\frac{D g(q)\left(f\left(p^{\prime}\right)-f(p)\right)-D g(q)\left(q^{\prime}-q\right)+g\left(q^{\prime}\right)-g(q)-D g(q) D f(p)\left(p^{\prime}-p\right)}{\left\|p^{\prime}-p\right\|} \\
& =D g(q) \frac{f\left(p^{\prime}\right)-f(p)-D f(p)\left(p^{\prime}-p\right)}{\left\|p^{\prime}-p\right\|}+\frac{g\left(q^{\prime}\right)-g(q)-D g(q)\left(q^{\prime}-q\right)}{\left\|p^{\prime}-p\right\|} \\
& =D g(q) \frac{f\left(p^{\prime}\right)-f(p)-D f(p)\left(p^{\prime}-p\right)}{\left\|p^{\prime}-p\right\|}+G\left(f\left(p^{\prime}\right)\right) \frac{\left\|f\left(p^{\prime}\right)-f(p)\right\|}{\left\|p^{\prime}-p\right\|} .
\end{aligned}
$$

As p^{\prime} approaches p, note that

$$
\frac{f\left(p^{\prime}\right)-f(p)-D f(p)\left(p^{\prime}-p\right)}{\left\|p^{\prime}-p\right\|}
$$

and $G\left(p^{\prime}\right)$ both approach zero and

$$
\frac{\left\|f\left(p^{\prime}\right)-f(p)\right\|}{\left\|p^{\prime}-p\right\|} \leq K+1
$$

So then

$$
\frac{(g \circ f)\left(p^{\prime}\right)-(g \circ f)(p)-D g(q) D f(p)\left(p^{\prime}-p\right)}{\left\|p^{\prime}-p\right\|}
$$

approaches zero as well, which is what we want.

