HIGHER DERIVATIVES BASED ON LECTURE NOTES BY JAMES MCKERNAN

We first record a very useful fact:

Theorem 1. Let $A \subset \mathbb{R}^n$ be an open subset. Let $f: A \to \mathbb{R}^m$ and $g: A \to \mathbb{R}^m$ be two functions and suppose that $p \in A$. Let $\lambda \in A$ be a scalar.

If f and g are differentiable at p, then

- (1) f + g is differentiable at p and D(f + g)(p) = Df(p) + Dg(p).
- (2) $\lambda \cdot f$ is differentiable at p and $D(\lambda f)(p) = \lambda D(f)(p)$.

Now suppose that m = 1.

- (3) fg is differentiable at p and D(fg)(p) = D(f)(p)g(p) + f(p)D(g)(p).
- (4) If $g(p) \neq 0$, then fg is differentiable at p and

$$D(f/g)(p) = \frac{D(f)(p)g(p) - f(p)D(g)(p)}{g^2(p)}$$

If the partial derivatives of f and g exist and are continuous, then (1) follows from the well-known single variable case. One can prove the general case of (1), by hand (basically lots of ϵ 's and δ 's). However, perhaps the best way to prove (1) is to use the chain rule, proved in the next section.

What about higher derivatives?

Blackboard 2. Let $A \subset \mathbb{R}^n$ be an open set and let $f: A \to \mathbb{R}$ be a function. The kth order partial derivative of f, with respect to the variables $x_{i_1}, x_{i_2}, \dots x_{i_k}$ is the iterated derivative

$$\frac{\partial^k f}{\partial x_{i_k} \partial x_{i_{k-1}} \dots \partial x_{i_2} \partial x_{i_1}}(p) = \frac{\partial}{\partial x_{i_k}} (\frac{\partial}{\partial x_{i_{k-1}}} (\dots \frac{\partial}{\partial x_{i_2}} (\frac{\partial f}{\partial x_{i_1}}) \dots))(p).$$

We will also use the notation $f_{x_{i_k}x_{i_{k-1}}...x_{i_2}x_{i_1}}(p)$.

Example 3. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be the function $f(x,t) = e^{-at} \cos x$. Then

$$f_{xx}(x,t) = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} (e^{-at} \cos x) \right)$$
$$= \frac{\partial}{\partial x} (-e^{-at} \sin x)$$
$$= -e^{-at} \cos x.$$

On the other hand,

$$f_{xt}(x,t) = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial t} (e^{-at} \cos x) \right)$$
$$= \frac{\partial}{\partial x} (-ae^{-at} \cos x)$$
$$= ae^{-at} \sin x.$$

Similarly,

$$f_{tx}(x,t) = \frac{\partial}{\partial t} \left(\frac{\partial}{\partial x} (e^{-at} \cos x) \right)$$
$$= \frac{\partial}{\partial t} (-e^{-at} \sin x)$$
$$= ae^{-at} \sin x.$$

Note that

$$f_t(x,t) = -ae^{-at}\cos x.$$

It follows that f(x,t) is a solution to the **Heat equation:**

$$a\frac{\partial^2 f}{\partial x^2} = \frac{\partial f}{\partial t}$$

Blackboard 4. Let $A \subset \mathbb{R}^n$ be an open subset and let $f: A \to \mathbb{R}^m$ be a function. We say that f is of **class** \mathcal{C}^k if all kth partial derivatives exist and are continuous. We say that f is of **class** \mathcal{C}^{∞} (aka **smooth**) if f is of class \mathcal{C}^k for all k.

In lecture 10 we saw that if f is \mathcal{C}^1 , then it is differentiable.

Theorem 5. Let $A \subset \mathbb{R}^n$ be an open subset and let $f: A \to \mathbb{R}^m$ be a function. If f is \mathcal{C}^2 , then

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i},$$

for all $1 \leq i, j \leq n$.

The proof uses the Mean Value Theorem.

Suppose we are given $A \subset \mathbb{R}$ an open subset and a function $f: A \to \mathbb{R}$ of class \mathcal{C}^1 . The objective is to find a solution to the equation

$$f(x) = 0.$$

Newton's method proceeds as follows. Start with some $x_0 \in A$. The best linear approximation to f(x) in a neighbourhood of x_0 is given by

$$f(x_0) + f'(x_0)(x - x_0).$$

If $f'(x_0) \neq 0$, then the linear equation

$$f(x_0) + f'(x_0)(x - x_0) = 0,$$

has the unique solution,

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

Now just keep going (assuming that $f'(x_i)$ is never zero),

$$x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})}$$

$$x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}$$

$$\vdots = \vdots$$

$$x_{n} = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}.$$

Claim 6. Suppose that $x_{\infty} = \lim_{n \to \infty} x_n$ exists and $f'(x_{\infty}) \neq 0$. Then $f(x_{\infty}) = 0$.

Proof of (6). Indeed, we have

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}.$$

Take the limit as n goes to ∞ of both sides:

$$x_{\infty} = x_{\infty} - \frac{f(x_{\infty})}{f'(x_{\infty})},$$

we used the fact that f and f' are continuous and $f'(x_{\infty}) \neq 0$. But then

$$f(x_{\infty}) = 0,$$

as claimed.

Suppose that $A \subset \mathbb{R}^n$ is open and $f: A \to \mathbb{R}^n$ is a function. Suppose that f is \mathcal{C}^1 (that is, suppose each of the coordinate functions f_1, \ldots, f_n is \mathcal{C}^1).

The objective is to find a solution to the equation

$$f(p) = \vec{0}.$$

Before we do this, we'll need to define determinants and inverses of matrices.

Blackboard 7. The identity n-by-n matrix I_n has 1's on the diagonal and zeros elsewhere. Let A be an n-by-n matrix.

Claim: IA = AI = A.

An n-by-n matrix B is an "inverse of A" if AB = BA = I. A is "invertible" if it has an inverse.

Blackboard 8. Let

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

The determinant of A, det A, is ad - bc.

Claim 9. If det $A \neq 0$ then

$$B = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

is the unique inverse of A.

Blackboard 10. One can also define determinants for $n \times n$ matrices. It is probably easiest to explain the general rule using an example:

1	0	0	2		1	1	9	0	1
2	0	1	-1		1	-1		0	
1	-2	1	1	= -2	1	1	-2 1	-2	
0	1	0	1		0	1	0	1	0

Notice that we as expand about the top row, the sign alternates +-+-, so that the last term comes with a minus sign.

Claim 11. Let A be an n-by-n matrix. If det $A \neq 0$ then A has a unique inverse.

Back to solving $f(p) = \vec{0}$. Start with any point $p_0 \in A$. The best linear approximation to f at p_0 is given by

$$f(p_0) + Df(p_0)\overrightarrow{pp_0}.$$

Assume that $Df(p_0)$ is an invertible matrix, that is, assume that $\det Df(p_0) \neq 0$. Then the inverse matrix $Df(p_0)^{-1}$ exists and the unique solution to the linear equation

$$f(p_0) + Df(p_0)\overrightarrow{pp_0} = \overrightarrow{0},$$

is given by

$$p_1 = p_0 - Df(p_0)^{-1}f(p_0).$$

Notice that matrix multiplication is not commutative, so that there is a difference between $Df(p_0)^{-1}f(p_0)$ and $f(p_0)Df(p_0)^{-1}$. If possible, we get a sequence of solutions,

$$p_{1} = p_{0} - Df(p_{0})^{-1}f(p_{0})$$

$$p_{2} = p_{1} - Df(p_{1})^{-1}f(p_{1})$$

$$\vdots = \vdots$$

$$p_{n} = p_{n-1} - Df(p_{n-1})^{-1}f(p_{n-1}).$$

Suppose that the limit $p_{\infty} = \lim_{n \to \infty} p_n$ exists and that $Df(p_{\infty})$ is invertible. As before, if we take the limit of both sides, this implies that

$$f(p_{\infty}) = \vec{0}.$$

Let us try a concrete example.

Example 12. Solve

$$x^2 + y^2 = 1$$
$$y^2 = x^3.$$

First we write down an appropriate function, $f \colon \mathbb{R}^2 \to \mathbb{R}^2$, given by $f(x, y) = (x^2 + y^2 - 1, y^2 - x^3)$. Then we are looking for a point p such that

$$f(p) = (0,0).$$

Then

$$Df(p) = \begin{pmatrix} 2x & 2y \\ -3x^2 & 2y \end{pmatrix}.$$

The determinant of this matrix is

$$4xy + 6x^2y = 2xy(2+3x).$$

Now if we are given a 2×2 matrix

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

then we may write down the inverse by hand,

$$\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

So

$$Df(p)^{-1} = \frac{1}{2xy(2+3x)} \begin{pmatrix} 2y & -2y \\ 3x^2 & 2x \end{pmatrix}$$

So,

$$Df(p)^{-1}f(p) = \frac{1}{2xy(2+3x)} \begin{pmatrix} 2y & -2y \\ 3x^2 & 2x \end{pmatrix} \begin{pmatrix} x^2+y^2-1 \\ y^2-x^3 \end{pmatrix}$$
$$= \frac{1}{2xy(2+3x)} \begin{pmatrix} 2x^2y-2y+2x^3y \\ x^4+3x^2y^2-3x^2+2xy^2 \end{pmatrix}$$

One nice thing about this method is that it is quite easy to implement on a computer. Here is what happens if we start with $(x_0, y_0) = (5, 2)$,

 $(x_1, y_1) = (3.24705882352941, -0.617647058823529)$

 $(x_2, y_2) = (2.09875150983980, 1.37996311951634)$

 $(x_3, y_3) = (1.37227480405610, 0.561220968705054)$

 $(x_4, y_4) = (0.959201654346683, 0.503839504009063)$

 $(x_5, y_5) = (0.787655203525685, 0.657830227357845)$

$$(x_6, y_6) = (0.755918792660404, 0.655438554539110),$$

and if we start with $(x_0, y_0) = (5, 5)$,

$$\begin{split} &(x_0,y_0) = (5.000000000000, 5.0000000000000) \\ &(x_1,y_1) = (3.24705882352941, 1.85294117647059) \\ &(x_2,y_2) = (2.09875150983980, 0.363541705259258) \\ &(x_3,y_3) = (1.37227480405610, -0.306989760884339) \\ &(x_4,y_4) = (0.959201654346683, -0.561589294711320) \\ &(x_5,y_5) = (0.787655203525685, -0.644964218428458) \\ &(x_6,y_6) = (0.755918792660404, -0.655519172668858). \end{split}$$

One can sketch the two curves and check that these give reasonable solutions. One can also check that (x_6, y_6) lie close to the two given curves, by computing $x_6^2 + y_6^2 - 1$ and $y_6^2 - x_6^3$.