
Higher derivatives
Based on lecture notes by James McKernan

We first record a very useful fact:

Theorem 1. Let A ⊂ Rn be an open subset. Let f : A → Rm and g : A → Rm be
two functions and suppose that p ∈ A. Let λ ∈ A be a scalar.

If f and g are differentiable at p, then

(1) f + g is differentiable at p and D(f + g)(p) = Df(p) +Dg(p).
(2) λ · f is differentiable at p and D(λf)(p) = λD(f)(p).

Now suppose that m = 1.

(3) fg is differentiable at p and D(fg)(p) = D(f)(p)g(p) + f(p)D(g)(p).
(4) If g(p) 6= 0, then fg is differentiable at p and

D(f/g)(p) =
D(f)(p)g(p)− f(p)D(g)(p)

g2(p)
.

If the partial derivatives of f and g exist and are continuous, then (1) follows
from the well-known single variable case. One can prove the general case of (1), by
hand (basically lots of ε’s and δ’s). However, perhaps the best way to prove (1) is
to use the chain rule, proved in the next section.

What about higher derivatives?

Blackboard 2. Let A ⊂ Rn be an open set and let f : A → R be a function.
The kth order partial derivative of f , with respect to the variables xi1 , xi2 ,
. . .xik is the iterated derivative

∂kf

∂xik∂xik−1
. . . ∂xi2∂xi1

(p) =
∂

∂xik
(

∂

∂xik−1

(. . .
∂

∂xi2
(
∂f

∂xi1
) . . . ))(p).

We will also use the notation fxik
xik−1

...xi2
xi1

(p).

Example 3. Let f : R2 → R be the function f(x, t) = e−at cosx.
Then

fxx(x, t) =
∂

∂x
(
∂

∂x
(e−at cosx))

=
∂

∂x
(−e−at sinx)

= −e−at cosx.

On the other hand,

fxt(x, t) =
∂

∂x
(
∂

∂t
(e−at cosx))

=
∂

∂x
(−ae−at cosx)

= ae−at sinx.

Similarly,

ftx(x, t) =
∂

∂t
(
∂

∂x
(e−at cosx))

=
∂

∂t
(−e−at sinx)

= ae−at sinx.
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Note that

ft(x, t) = −ae−at cosx.

It follows that f(x, t) is a solution to the Heat equation:

a
∂2f

∂x2
=
∂f

∂t
.

Blackboard 4. Let A ⊂ Rn be an open subset and let f : A → Rm be a function.
We say that f is of class Ck if all kth partial derivatives exist and are continuous.

We say that f is of class C∞ (aka smooth) if f is of class Ck for all k.

In lecture 10 we saw that if f is C1, then it is differentiable.

Theorem 5. Let A ⊂ Rn be an open subset and let f : A→ Rm be a function.
If f is C2, then

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
,

for all 1 ≤ i, j ≤ n.

The proof uses the Mean Value Theorem.
Suppose we are given A ⊂ R an open subset and a function f : A → R of class

C1. The objective is to find a solution to the equation

f(x) = 0.

Newton’s method proceeds as follows. Start with some x0 ∈ A. The best linear
approximation to f(x) in a neighbourhood of x0 is given by

f(x0) + f ′(x0)(x− x0).

If f ′(x0) 6= 0, then the linear equation

f(x0) + f ′(x0)(x− x0) = 0,

has the unique solution,

x1 = x0 −
f(x0)

f ′(x0)
.

Now just keep going (assuming that f ′(xi) is never zero),

x1 = x0 −
f(x0)

f ′(x0)

x2 = x1 −
f(x1)

f ′(x1)

... =
...

xn = xn−1 −
f(xn−1)

f ′(xn−1)
.

Claim 6. Suppose that x∞ = limn→∞ xn exists and f ′(x∞) 6= 0.
Then f(x∞) = 0.

Proof of (6). Indeed, we have

xn = xn−1 −
f(xn−1)

f ′(xn−1)
.
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Take the limit as n goes to ∞ of both sides:

x∞ = x∞ −
f(x∞)

f ′(x∞)
,

we used the fact that f and f ′ are continuous and f ′(x∞) 6= 0. But then

f(x∞) = 0,

as claimed. �

Suppose that A ⊂ Rn is open and f : A → Rn is a function. Suppose that f is
C1 (that is, suppose each of the coordinate functions f1, . . . , fn is C1).

The objective is to find a solution to the equation

f(p) = ~0.

Before we do this, we’ll need to define determinants and inverses of matrices.

Blackboard 7. The identity n-by-n matrix In has 1’s on the diagonal and zeros
elsewhere. Let A be an n-by-n matrix.

Claim: IA = AI = A.
An n-by-n matrix B is an “inverse of A” if AB = BA = I. A is “invertible” if

it has an inverse.

Blackboard 8. Let

A =

(
a b
c d

)
.

The determinant of A, detA, is ad− bc.

Claim 9. If detA 6= 0 then

B =
1

detA

(
d −b
−c a

)
.

is the unique inverse of A.

Blackboard 10. One can also define determinants for n×n matrices. It is probably
easiest to explain the general rule using an example:∣∣∣∣∣∣∣∣

1 0 0 2
2 0 1 −1
1 −2 1 1
0 1 0 1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
0 1 −1
−2 1 1
1 0 1

∣∣∣∣∣∣− 2

∣∣∣∣∣∣
2 0 1
1 −2 1
0 1 0

∣∣∣∣∣∣ .
Notice that we as expand about the top row, the sign alternates +−+−, so that the
last term comes with a minus sign.

Claim 11. Let A be an n-by-n matrix. If detA 6= 0 then A has a unique inverse.

Back to solving f(p) = ~0. Start with any point p0 ∈ A. The best linear approx-
imation to f at p0 is given by

f(p0) +Df(p0)−→pp0.
Assume that Df(p0) is an invertible matrix, that is, assume that detDf(p0) 6= 0.
Then the inverse matrix Df(p0)−1 exists and the unique solution to the linear
equation

f(p0) +Df(p0)−→pp0 = ~0,
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is given by

p1 = p0 −Df(p0)−1f(p0).

Notice that matrix multiplication is not commutative, so that there is a difference
between Df(p0)−1f(p0) and f(p0)Df(p0)−1. If possible, we get a sequence of
solutions,

p1 = p0 −Df(p0)−1f(p0)

p2 = p1 −Df(p1)−1f(p1)

... =
...

pn = pn−1 −Df(pn−1)−1f(pn−1).

Suppose that the limit p∞ = limn→∞ pn exists and that Df(p∞) is invertible.
As before, if we take the limit of both sides, this implies that

f(p∞) = ~0.

Let us try a concrete example.

Example 12. Solve

x2 + y2 = 1

y2 = x3.

First we write down an appropriate function, f : R2 → R2, given by f(x, y) =
(x2 + y2 − 1, y2 − x3). Then we are looking for a point p such that

f(p) = (0, 0).

Then

Df(p) =

(
2x 2y
−3x2 2y

)
.

The determinant of this matrix is

4xy + 6x2y = 2xy(2 + 3x).

Now if we are given a 2× 2 matrix(
a b
c d

)
,

then we may write down the inverse by hand,

1

ad− bc

(
d −b
−c a

)
.

So

Df(p)−1 =
1

2xy(2 + 3x)

(
2y −2y
3x2 2x

)
So,

Df(p)−1f(p) =
1

2xy(2 + 3x)

(
2y −2y
3x2 2x

)(
x2 + y2 − 1
y2 − x3

)
=

1

2xy(2 + 3x)

(
2x2y − 2y + 2x3y

x4 + 3x2y2 − 3x2 + 2xy2

)
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One nice thing about this method is that it is quite easy to implement on a
computer. Here is what happens if we start with (x0, y0) = (5, 2),

(x0, y0) = (5.00000000000000, 2.00000000000000)

(x1, y1) = (3.24705882352941,−0.617647058823529)

(x2, y2) = (2.09875150983980, 1.37996311951634)

(x3, y3) = (1.37227480405610, 0.561220968705054)

(x4, y4) = (0.959201654346683, 0.503839504009063)

(x5, y5) = (0.787655203525685, 0.657830227357845)

(x6, y6) = (0.755918792660404, 0.655438554539110),

and if we start with (x0, y0) = (5, 5),

(x0, y0) = (5.00000000000000, 5.00000000000000)

(x1, y1) = (3.24705882352941, 1.85294117647059)

(x2, y2) = (2.09875150983980, 0.363541705259258)

(x3, y3) = (1.37227480405610,−0.306989760884339)

(x4, y4) = (0.959201654346683,−0.561589294711320)

(x5, y5) = (0.787655203525685,−0.644964218428458)

(x6, y6) = (0.755918792660404,−0.655519172668858).

One can sketch the two curves and check that these give reasonable solutions.
One can also check that (x6, y6) lie close to the two given curves, by computing
x26 + y26 − 1 and y26 − x36.


