We first record a very useful fact:
Theorem 1. Let $A \subset \mathbb{R}^{n}$ be an open subset. Let $f: A \rightarrow \mathbb{R}^{m}$ and $g: A \rightarrow \mathbb{R}^{m}$ be two functions and suppose that $p \in A$. Let $\lambda \in A$ be a scalar.

If f and g are differentiable at p, then
(1) $f+g$ is differentiable at p and $D(f+g)(p)=D f(p)+D g(p)$.
(2) $\lambda \cdot f$ is differentiable at p and $D(\lambda f)(p)=\lambda D(f)(p)$.

Now suppose that $m=1$.
(3) $f g$ is differentiable at p and $D(f g)(p)=D(f)(p) g(p)+f(p) D(g)(p)$.
(4) If $g(p) \neq 0$, then $f g$ is differentiable at p and

$$
D(f / g)(p)=\frac{D(f)(p) g(p)-f(p) D(g)(p)}{g^{2}(p)}
$$

If the partial derivatives of f and g exist and are continuous, then (1) follows from the well-known single variable case. One can prove the general case of (1), by hand (basically lots of ϵ 's and δ 's). However, perhaps the best way to prove (1) is to use the chain rule, proved in the next section.

What about higher derivatives?
Blackboard 2. Let $A \subset \mathbb{R}^{n}$ be an open set and let $f: A \rightarrow \mathbb{R}$ be a function. The k th order partial derivative of f, with respect to the variables $x_{i_{1}}, x_{i_{2}}$, $\ldots x_{i_{k}}$ is the iterated derivative

$$
\frac{\partial^{k} f}{\partial x_{i_{k}} \partial x_{i_{k-1}} \ldots \partial x_{i_{2}} \partial x_{i_{1}}}(p)=\frac{\partial}{\partial x_{i_{k}}}\left(\frac{\partial}{\partial x_{i_{k-1}}}\left(\ldots \frac{\partial}{\partial x_{i_{2}}}\left(\frac{\partial f}{\partial x_{i_{1}}}\right) \ldots\right)\right)(p)
$$

We will also use the notation $f_{x_{i_{k}} x_{i_{k-1}} \ldots x_{i_{2}} x_{i_{1}}}(p)$.
Example 3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function $f(x, t)=e^{-a t} \cos x$.
Then

$$
\begin{aligned}
f_{x x}(x, t) & =\frac{\partial}{\partial x}\left(\frac{\partial}{\partial x}\left(e^{-a t} \cos x\right)\right) \\
& =\frac{\partial}{\partial x}\left(-e^{-a t} \sin x\right) \\
& =-e^{-a t} \cos x
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
f_{x t}(x, t) & =\frac{\partial}{\partial x}\left(\frac{\partial}{\partial t}\left(e^{-a t} \cos x\right)\right) \\
& =\frac{\partial}{\partial x}\left(-a e^{-a t} \cos x\right) \\
& =a e^{-a t} \sin x
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
f_{t x}(x, t) & =\frac{\partial}{\partial t}\left(\frac{\partial}{\partial x}\left(e^{-a t} \cos x\right)\right) \\
& =\frac{\partial}{\partial t}\left(-e^{-a t} \sin x\right) \\
& =a e^{-a t} \sin x
\end{aligned}
$$

Note that

$$
f_{t}(x, t)=-a e^{-a t} \cos x
$$

It follows that $f(x, t)$ is a solution to the Heat equation:

$$
a \frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial f}{\partial t}
$$

Blackboard 4. Let $A \subset \mathbb{R}^{n}$ be an open subset and let $f: A \rightarrow \mathbb{R}^{m}$ be a function. We say that f is of class \mathcal{C}^{k} if all kth partial derivatives exist and are continuous.

We say that f is of class \mathcal{C}^{∞} (aka smooth) if f is of class \mathcal{C}^{k} for all k.
In lecture 10 we saw that if f is \mathcal{C}^{1}, then it is differentiable.
Theorem 5. Let $A \subset \mathbb{R}^{n}$ be an open subset and let $f: A \rightarrow \mathbb{R}^{m}$ be a function.
If f is \mathcal{C}^{2}, then

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}
$$

for all $1 \leq i, j \leq n$.
The proof uses the Mean Value Theorem.
Suppose we are given $A \subset \mathbb{R}$ an open subset and a function $f: A \rightarrow \mathbb{R}$ of class \mathcal{C}^{1}. The objective is to find a solution to the equation

$$
f(x)=0
$$

Newton's method proceeds as follows. Start with some $x_{0} \in A$. The best linear approximation to $f(x)$ in a neighbourhood of x_{0} is given by

$$
f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

If $f^{\prime}\left(x_{0}\right) \neq 0$, then the linear equation

$$
f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)=0
$$

has the unique solution,

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

Now just keep going (assuming that $f^{\prime}\left(x_{i}\right)$ is never zero),

$$
\begin{aligned}
x_{1} & =x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
x_{2} & =x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
\vdots & =\vdots \\
x_{n} & =x_{n-1}-\frac{f\left(x_{n-1}\right)}{f^{\prime}\left(x_{n-1}\right)}
\end{aligned}
$$

Claim 6. Suppose that $x_{\infty}=\lim _{n \rightarrow \infty} x_{n}$ exists and $f^{\prime}\left(x_{\infty}\right) \neq 0$.
Then $f\left(x_{\infty}\right)=0$.
Proof of (6). Indeed, we have

$$
x_{n}=x_{n-1}-\frac{f\left(x_{n-1}\right)}{f^{\prime}\left(x_{n-1}\right)}
$$

Take the limit as n goes to ∞ of both sides:

$$
x_{\infty}=x_{\infty}-\frac{f\left(x_{\infty}\right)}{f^{\prime}\left(x_{\infty}\right)}
$$

we used the fact that f and f^{\prime} are continuous and $f^{\prime}\left(x_{\infty}\right) \neq 0$. But then

$$
f\left(x_{\infty}\right)=0
$$

as claimed.
Suppose that $A \subset \mathbb{R}^{n}$ is open and $f: A \rightarrow \mathbb{R}^{n}$ is a function. Suppose that f is \mathcal{C}^{1} (that is, suppose each of the coordinate functions f_{1}, \ldots, f_{n} is \mathcal{C}^{1}).

The objective is to find a solution to the equation

$$
f(p)=\overrightarrow{0}
$$

Before we do this, we'll need to define determinants and inverses of matrices.
Blackboard 7. The identity n-by-n matrix I_{n} has 1's on the diagonal and zeros elsewhere. Let A be an n-by-n matrix.

Claim: $I A=A I=A$.
An n-by-n matrix B is an "inverse of A " if $A B=B A=I$. A is "invertible" if it has an inverse.

Blackboard 8. Let

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

The determinant of A, $\operatorname{det} A$, is $a d-b c$.
Claim 9. If $\operatorname{det} A \neq 0$ then

$$
B=\frac{1}{\operatorname{det} A}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

is the unique inverse of A.
Blackboard 10. One can also define determinants for $n \times n$ matrices. It is probably easiest to explain the general rule using an example:

$$
\left|\begin{array}{cccc}
1 & 0 & 0 & 2 \\
2 & 0 & 1 & -1 \\
1 & -2 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right|=\left|\begin{array}{ccc}
0 & 1 & -1 \\
-2 & 1 & 1 \\
1 & 0 & 1
\end{array}\right|-2\left|\begin{array}{ccc}
2 & 0 & 1 \\
1 & -2 & 1 \\
0 & 1 & 0
\end{array}\right|
$$

Notice that we as expand about the top row, the sign alternates +-+- , so that the last term comes with a minus sign.
Claim 11. Let A be an n-by-n matrix. If $\operatorname{det} A \neq 0$ then A has a unique inverse.
Back to solving $f(p)=\overrightarrow{0}$. Start with any point $p_{0} \in A$. The best linear approximation to f at p_{0} is given by

$$
f\left(p_{0}\right)+D f\left(p_{0}\right) \overrightarrow{p p_{0}}
$$

Assume that $D f\left(p_{0}\right)$ is an invertible matrix, that is, assume that $\operatorname{det} D f\left(p_{0}\right) \neq 0$. Then the inverse matrix $D f\left(p_{0}\right)^{-1}$ exists and the unique solution to the linear equation

$$
f\left(p_{0}\right)+D f\left(p_{0}\right) \overrightarrow{p_{0}}=\overrightarrow{0}
$$

is given by

$$
p_{1}=p_{0}-D f\left(p_{0}\right)^{-1} f\left(p_{0}\right)
$$

Notice that matrix multiplication is not commutative, so that there is a difference between $D f\left(p_{0}\right)^{-1} f\left(p_{0}\right)$ and $f\left(p_{0}\right) D f\left(p_{0}\right)^{-1}$. If possible, we get a sequence of solutions,

$$
\begin{aligned}
& p_{1}=p_{0}-D f\left(p_{0}\right)^{-1} f\left(p_{0}\right) \\
& p_{2}=p_{1}-D f\left(p_{1}\right)^{-1} f\left(p_{1}\right) \\
& \vdots \\
&=\vdots \\
& p_{n}=p_{n-1}-D f\left(p_{n-1}\right)^{-1} f\left(p_{n-1}\right) .
\end{aligned}
$$

Suppose that the limit $p_{\infty}=\lim _{n \rightarrow \infty} p_{n}$ exists and that $D f\left(p_{\infty}\right)$ is invertible. As before, if we take the limit of both sides, this implies that

$$
f\left(p_{\infty}\right)=\overrightarrow{0}
$$

Let us try a concrete example.
Example 12. Solve

$$
\begin{aligned}
x^{2}+y^{2} & =1 \\
y^{2} & =x^{3} .
\end{aligned}
$$

First we write down an appropriate function, $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, given by $f(x, y)=$ $\left(x^{2}+y^{2}-1, y^{2}-x^{3}\right)$. Then we are looking for a point p such that

$$
f(p)=(0,0)
$$

Then

$$
D f(p)=\left(\begin{array}{cc}
2 x & 2 y \\
-3 x^{2} & 2 y
\end{array}\right)
$$

The determinant of this matrix is

$$
4 x y+6 x^{2} y=2 x y(2+3 x)
$$

Now if we are given a 2×2 matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right),
$$

then we may write down the inverse by hand,

$$
\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) .
$$

So

$$
D f(p)^{-1}=\frac{1}{2 x y(2+3 x)}\left(\begin{array}{cc}
2 y & -2 y \\
3 x^{2} & 2 x
\end{array}\right)
$$

So,

$$
\begin{aligned}
D f(p)^{-1} f(p) & =\frac{1}{2 x y(2+3 x)}\left(\begin{array}{cc}
2 y & -2 y \\
3 x^{2} & 2 x
\end{array}\right)\binom{x^{2}+y^{2}-1}{y^{2}-x^{3}} \\
& =\frac{1}{2 x y(2+3 x)}\binom{2 x^{2} y-2 y+2 x^{3} y}{x^{4}+3 x^{2} y^{2}-3 x^{2}+2 x y^{2}}
\end{aligned}
$$

One nice thing about this method is that it is quite easy to implement on a computer. Here is what happens if we start with $\left(x_{0}, y_{0}\right)=(5,2)$,

$$
\begin{aligned}
\left(x_{0}, y_{0}\right) & =(5.00000000000000,2.00000000000000) \\
\left(x_{1}, y_{1}\right) & =(3.24705882352941,-0.617647058823529) \\
\left(x_{2}, y_{2}\right) & =(2.09875150983980,1.37996311951634) \\
\left(x_{3}, y_{3}\right) & =(1.37227480405610,0.561220968705054) \\
\left(x_{4}, y_{4}\right) & =(0.959201654346683,0.503839504009063) \\
\left(x_{5}, y_{5}\right) & =(0.787655203525685,0.657830227357845) \\
\left(x_{6}, y_{6}\right) & =(0.755918792660404,0.655438554539110),
\end{aligned}
$$

and if we start with $\left(x_{0}, y_{0}\right)=(5,5)$,

$$
\begin{aligned}
\left(x_{0}, y_{0}\right) & =(5.00000000000000,5.00000000000000) \\
\left(x_{1}, y_{1}\right) & =(3.24705882352941,1.85294117647059) \\
\left(x_{2}, y_{2}\right) & =(2.09875150983980,0.363541705259258) \\
\left(x_{3}, y_{3}\right) & =(1.37227480405610,-0.306989760884339) \\
\left(x_{4}, y_{4}\right) & =(0.959201654346683,-0.561589294711320) \\
\left(x_{5}, y_{5}\right) & =(0.787655203525685,-0.644964218428458) \\
\left(x_{6}, y_{6}\right) & =(0.755918792660404,-0.655519172668858) .
\end{aligned}
$$

One can sketch the two curves and check that these give reasonable solutions. One can also check that $\left(x_{6}, y_{6}\right)$ lie close to the two given curves, by computing $x_{6}^{2}+y_{6}^{2}-1$ and $y_{6}^{2}-x_{6}^{3}$.

