
More about derivatives
Based on lecture notes by James McKernan

The main result is:

Theorem 1. Let S ⊂ Rn be an open subset and let f : S → Rm be a function.
If the partial derivatives

∂fi
∂xj

,

exist and are continuous, then f is differentiable.

We will need:

Theorem 2 (Mean value theorem). Let f : [a, b] → R is continuous and differen-
tiable at every point of (a, b), then we may find c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a).

Geometrically, (2) is clear. However it is surprisingly hard to give a complete
proof.

Proof of (1). We may assume that m = 1. We only prove this in the case when
n = 2 (the general case is similar, only notationally more involved). So we have

f : R2 → R.

Suppose that p = (a, b) and let −→pq = h1 ı̂ + h2̂. Let

p0 = (a, b) p1 = (a + h1, b) and p2 = (a + h1, b + h2) = q.

Now

f(q)− f(p) = [f(p2)− f(p1)] + [f(p1)− f(p0)].

We apply the Mean value theorem twice. We may find q1 and q2 such that

f(p1)− f(p0) =
∂f

∂x
(q1)h1 and f(p2)− f(p1) =

∂f

∂y
(q2)h2.

Here q1 lies somewhere on the line segment p0p1 and q2 lies on the line segment
p1p2. Putting this together, we get

f(q)− f(p) =
∂f

∂x
(q1)h1 +

∂f

∂y
(q2)h2.

Thus

|f(q)− f(p)−A · −→pq|
|−→pq|

=
|(∂f

∂x (q1)− ∂f
∂x (p))h1 + (∂f

∂y (q2)− ∂f
∂y (p))h2|

|−→pq|

≤
|(∂f

∂x (q1)− ∂f
∂x (p))h1|

|−→pq|
+
|(∂f

∂y (q2)− ∂f
∂y (p))h2|

|−→pq|

≤
|(∂f

∂x (q1)− ∂f
∂x (p))h1|

|h1|
+
|(∂f

∂y (q2)− ∂f
∂y (p))h2|

|h2|

= |(∂f
∂x

(q1)− ∂f

∂x
(p))|+ |(∂f

∂y
(q2)− ∂f

∂y
(p))|.
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Note that as q approaches p, q1 and q2 both approach p as well. As the partials of
f are continuous, we have

lim
q→p

|f(q)− f(p)−A · −→pq|
|−→pq|

≤ lim
q→p

(|(∂f
∂x

(q1)− ∂f

∂x
(p))|+ |(∂f

∂y
(q2)− ∂f

∂y
(p))|) = 0.

Therefore f is differentiable at p, with derivative A. �

Example 3. Let f : S → R be given by

f(x, y) =
x√

x2 + y2
,

where S = R2 − {(0, 0)}. Then

∂f

∂x
=

(x2 + y2)1/2 − x(2x)(1/2)(x2 + y2)−1/2

x2 + y2
=

y2

(x2 + y2)3/2
.

Similarly
∂f

∂y
= − xy

(x2 + y2)3/2
.

Now both partial derivatives exist and are continuous, and so f is differentiable,
with derivative the gradient,

∇f = (
y2

(x2 + y2)3/2
,− xy

(x2 + y2)3/2
) =

1

(x2 + y2)3/2
(y2,−xy).

Lemma 4. Let A = (aij) be an m× n matrix. Let

z =

√∑
i,j

a2ij .

If ~v ∈ Rn then

|A~v| ≤ z|~v|.

Proof. Let a1, . . . , am be the rows of A. Then the entry in the ith row of A~v is
~ai · ~v. So,

|A~v|2 = (~a1 · ~v)2 + (~a2 · ~v)2 + · · ·+ (~an · ~v)2

≤ |~a1|2|~v|2 + |~a2|2|~v|2 + · · ·+ |~an|2|~v|2

= (|~a1|2 + |~a2|2 + · · ·+ |~an|2)|~v|2

= z2|~v|2.

Now take square roots of both sides. �

Theorem 5. Let f : S → Rm be a function, where S ⊂ Rn is open.
If f is differentiable at p, then f is continuous at p.

Proof. Suppose that Df(p) = A. Then

lim
q→p

f(q)− f(p)−A · −→pq
|−→pq|

= 0.

This is the same as to require

lim
q→p

|f(q)− f(p)−A · −→pq|
|−→pq|

= 0.
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But if this happens, then surely

lim
q→p
|f(q)− f(p)−A · −→pq| = 0.

So

|f(q)− f(p)| = |f(q)− f(p)−A · −→pq + A · −→pq|
≤ |f(q)− f(p)−A · −→pq|+ |A · −→pq|
≤ |f(q)− f(p)−A · −→pq|+ z|−→pq|.

Taking the limit as q approaches p, both terms on the RHS go to zero, so that

lim
q→p
|f(q)− f(p)| = 0,

and f is continuous at p. �


