Vectors in \mathbb{R}^2 and \mathbb{R}^3 Based on lecture notes by James McKernan

0.1. Definition.

Blackboard 1. A vector $\vec{u} \in \mathbb{R}^3$ is a 3-tuple of real numbers (v_1, v_2, v_3) .

- Examples: $(2014, -1, 17.3), (-1, \sqrt{2}, \pi), \vec{0} = (0, 0, 0).$
- Order matters: $(1, 2, 3) \neq (1, 3, 2)$.
- Can also be written in a column: $\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$.

Vectors in \mathbb{R}^2 have two numbers, but otherwise are the same.

0.2. Addition and multiplication by scalars.

Blackboard 2. Let \vec{v} and \vec{w} be two vectors in \mathbb{R}^3 . Then their sum is

$$\vec{v} + \vec{w} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} + \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \\ v_3 + w_3 \end{pmatrix}.$$

Example: If $\vec{v} = (2, -3, 1)$ and $\vec{w} = (1, -5, 3)$ then $\vec{v} + \vec{w} = (3, -8, 4)$.

Subtraction can be defined similarly.

Geometric / graphical interpretation: think of vectors as displacements from the origin. Then to build $\vec{v} + \vec{w}$, shift \vec{w} so that its tail is connected to \vec{v} 's head. The vector connecting the tail of \vec{v} and the head of the shifted \vec{w} is $\vec{v} + \vec{w}$. Subtraction is done by connecting the heads without shifting: $\vec{w} + (\vec{v} - \vec{w}) = \vec{v}$.

Blackboard 3. The product of $\vec{v} \in \mathbb{R}^3$ and $\lambda \in \mathbb{R}$ (called a scalar) is

$$\lambda \vec{v} = \lambda \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} \lambda v_1 \\ \lambda v_2 \\ \lambda v_3 \end{pmatrix}.$$

Example: If $\vec{v} = (2, -3, 1)$, $\lambda = -3$ then $\lambda \vec{v} = (-6, 9, -3)$.

Theorem 4. If λ, μ are scalars and $\vec{v}, \vec{w}, \vec{u}$ are vectors then

- (1) $\vec{v} + \vec{w} = \vec{w} + \vec{v}$.
- $(2) \quad \vec{v} + \vec{0} = \vec{v}.$
- (3) $\vec{v} + (\vec{w} + \vec{u}) = (\vec{v} + \vec{w}) + \vec{u}.$
- (4) $\lambda(\vec{v} + \vec{w}) = \lambda \vec{v} + \lambda \vec{w}.$
- (5) $(\lambda + \mu)\vec{v} = \lambda\vec{v} + \mu\vec{v}.$
- (6) $\lambda(\mu \vec{v}) = (\lambda \mu) \vec{v}.$

Proof. Proof of (1):

$$\vec{v} + \vec{w} = \begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \\ v_3 + w_3 \end{pmatrix} = \begin{pmatrix} w_1 + v_1 \\ w_2 + v_2 \\ w_3 + v_3 \end{pmatrix} = \vec{w} + \vec{v}.$$

Blackboard 5. The magnitude (or length or norm) of $\vec{v} \in \mathbb{R}^3$ is

$$\vec{v}| = \sqrt{v_1^2 + v_2^2 + v_3^3}.$$

The direction of a vector $\vec{v} \in \mathbb{R}^3$ is the vector

$$\hat{v} = \frac{1}{|\vec{v}|}\vec{v}.$$

A vector with magnitude one is called a **unit vector**.

Theorem 6. The magnitude of $\lambda \vec{v}$ is $|\lambda|$ times the magnitude of \vec{v} . *Proof.*

$$\begin{aligned} |\lambda \vec{v}| &= |(\lambda v_1, \lambda v_2, \lambda v_3)| \\ &= \sqrt{(\lambda v_1)^2 + (\lambda v_2)^2 + (\lambda v_3)^3} \\ &= \lambda \sqrt{v_1^2 + v_2^2 + v_3^3} \\ &= |\lambda| |\vec{v}|. \end{aligned}$$

Corollary 7. The magnitude of $\frac{1}{|\vec{v}|}\vec{v}$ is one.

Proof. Substitute $\lambda = \frac{1}{|\vec{v}|}$ in the theorem.

Geometric / graphical interpretation:

- Multiplying by $\lambda > 0$ changes the length by λ but leaves the direction the same (proof?).
- Multiplying by $\lambda = 1$ does nothing.
- Multiplying by $\lambda = 0$ always results in $\vec{0}$.
- Multiplying by $\lambda < 0$ changes the length by $|\lambda|$ and changes the direction to the opposite direction.
- Multiplying by $\lambda = -1$ gives the same vector, in the opposite direction.

0.4. The standard basis.

Blackboard 8. \mathbb{R}^3 has three special unit vectors called the standard basis

$$\hat{e}_1 = \hat{i} = (1, 0, 0)$$
 $\hat{e}_2 = \hat{j} = (0, 1, 0)$ $\hat{e}_3 = \hat{k} = (0, 0, 1).$

Vector $\vec{v} = (v_1, v_2, v_3)$ can be written as the linear combination $\vec{v} = v_1 \hat{i} + v_2 \hat{j} + v_3 \hat{k}$.

0.5. **Physics.** Vectors are important in math, and also in physics, engineering etc. For example

Blackboard 9. • Velocity, acceleration, force and electric field are vectors.

- Energy and mass are not vectors.
- $\vec{F} = m\vec{a}$ is the vector form of Newton's equation.
- Acceleration due to gravity is

$$\vec{a} = -\frac{Gm_1m_2}{|\vec{r}|^3}\vec{r}.$$

0.6. Parametrizing lines using vectors.

Blackboard 10. Let \vec{v} and \vec{w} be two vectors in \mathbb{R}^3 .

Characterize all the vectors \vec{c} whose heads lie on the line connecting the heads of \vec{v} and \vec{w} .

Let $\vec{a} = \vec{v} - \vec{w}$. Then $\vec{c} = \vec{w} + t\vec{a}$ for some $0 \le t \le 1$.

We can also write this as $\vec{c} = \vec{w} + t\vec{a} = \vec{w} + t(\vec{v} - \vec{w}) = (1 - t)\vec{w} + t\vec{v}$.

The entire line that the heads lie on is $\vec{c} = \vec{w} + t\vec{a}$, where t can be any number.

Blackboard 11. Let $P = (p_1, p_2, p_3), Q = (q_1, q_2, q_3)$ be points in space. Then $\overrightarrow{PQ} = (q_1 - p_1, q_2 - p_2, q_3 - p_3)$ is the vector from P to Q.

Example: Let P = (1,2), Q = (4,-5). The line PQ can be parametrized by

$$P + t(P\dot{Q}) = (1,2) + t(3,-7) = (1+3t,2-7t)$$

Where do the two lines (1, -2 + 2s, 3 - 4s) and (-1 + 2t, -3 + t, 3t) intersect?

- By the first component 1 = -1 + 2t so t = 1.
- By the second component -2 + 2s = -3 + 1 so s = 0.
- We have equality in the third component. Otherwise the lines wouldn't intersect.
- So the lines intersect at (1, -2, 3).

Theorem 12. Medians of a triangle intersect at the same point, and the intersection point divides them in proportion 2:1.

Triangle ABC, D between A and C, E between C and B, F between B and A, G the intersection of DB and AE. Let $\vec{a} = \overrightarrow{CA}$ and $\vec{b} = \overrightarrow{CB}$.

Proof. Points of AE are $\vec{a} + t(\frac{1}{2}\vec{b} - \vec{a}) = (1 - t)\vec{a} + \frac{1}{2}t\vec{b}$. Points of BD are $\vec{b} + s(\frac{1}{2}\vec{a} - \vec{b}) = (1 - s)\vec{b} + \frac{1}{2}s\vec{a}$. Intersection at $\frac{1}{2}s = 1 - t$ and $\frac{1}{2}t = 1 - s$. Hence $t = \frac{2}{3}$ and

$$\overrightarrow{CG} = \frac{1}{3}\vec{a} + \frac{1}{3}\vec{b}.$$

Now, $\overrightarrow{EG} + \overrightarrow{GC} = \overrightarrow{EC}$. Therefore $\overrightarrow{EG} = \overrightarrow{CG}$

$$\overline{E}\vec{G} = \overline{C}\vec{G} - \frac{1}{2}\vec{b}$$
$$= \frac{1}{3}\vec{a} + \frac{1}{3}\vec{b} - \frac{1}{2}\vec{b}$$
$$= \frac{1}{3}(\vec{a} - \frac{1}{2}\vec{b})$$
$$= \frac{1}{3}\overrightarrow{EA}.$$

By symmetry, the third median intersects at the same point.