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Abstract. In an unfriendly coloring of a graph the color of every
node mismatches that of the majority of its neighbors. We show
that every probability measure preserving Borel graph with finite
average degree admits a Borel unfriendly coloring almost every-
where. We also show that every bounded degree Borel graph of
subexponential growth admits a Borel unfriendly coloring.

1. Introduction

Suppose that G is a locally finite graph on the vertex set X. We
say that c : X → 2 is an unfriendly coloring of G if for all x ∈ X at
least half of x’s neighbors receive a different color than x does. More
formally, letting Gx denote the set of G-neighbors of x, such a function
c is an unfriendly coloring if |{y ∈ Gx : c(x) ̸= c(y)}| ≥ |{y ∈ Gx :
c(x) = c(y)}|. By a compactness argument unfriendly colorings exist
for all locally finite graphs (see, e.g., [1]). There exist graphs with
uncountable vertex sets that have no unfriendly colorings [8]; it is not
known if this is possible for graphs with countably many vertices.

A large and growing literature considers measure-theoretical ana-
logues of classical combinatorial questions (see, e.g., a survey by Kechris
and Marks [6]). Following [3], we consider a measure-theoretical ana-
logue of the question of unfriendly colorings. Suppose that G is a locally
finite Borel graph on the standard Borel space X, and that µ is a Borel
probability measure on X. We say that G is µ-preserving if there are
countably many µ-preserving Borel involutions whose graphs cover the
edges of G. Equivalently, G is µ-preserving if its connectedness relation
EG is a µ-preserving equivalence relation.

An important example of such graphs comes from probability mea-
sure preserving actions of finitely generated groups. Indeed let a group,
generated by the finite symmetric set S, act by measure preserving
transformations on a standard Borel probability space (X,µ). Then
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the associated graph G = (X,E) whose edges are
E = {(x, y) : y = sx for some s ∈ S}

is a µ-preserving graph.
In [3] it is shown that every free probability measure preserving ac-

tion of a finitely generated group is weakly equivalent to another such
action whose associated graph admits an unfriendly coloring. Note that
such graphs are regular: (almost) every node has degree |Gx| = |S|.
Recall that the (µ-)cost of a µ-preserving locally finite Borel graph G is
simply half its average degree: cost(G) = 1

2

∫
X
|Gx| dµ. Equivalently,

using the Lusin-Novikov uniformization theorem (see, e.g., [5, Lemma
18.12]) one may circumvent this factor of 1

2
by instead computing∫

X
|G⃗x|dµ, where G⃗ is an arbitrary measurable orientation of G.

Our first result shows that every measure preserving graph with finite
cost admits an (almost everywhere) unfriendly coloring.
Theorem 1. Suppose that (X,µ) is a standard probability space and
that G is a µ-preserving locally finite Borel graph on X with finite
cost. Then there is a µ-conull G-invariant Borel set A such that G ↾ A
admits a Borel unfriendly coloring.

We next explore how the invariance assumption can be weakened.
Recall that a Borel probability measure is G-quasi-invariant if the G-
saturation of every µ-null set remains µ-null. Such measures admit a
Radon-Nikodym cocycle ρ : G → R+ so that whenever A ⊆ X is Borel
and f : A → X a Borel partial injection whose graph is contained in
G, then µ(f [A]) =

∫
A
ρ(x, f(x)) dµ.

Theorem 2. Suppose that (X,µ) is a standard probability space, that
G is a Borel graph on X with bounded degree d, and that µ is G-quasi-
invariant, with corresponding Radon-Nikodym cocycle ρ. Suppose also
that for all (x, y) ∈ G, 1 − 1

d
≤ ρ(x, y) ≤ 1 + 1

d
. Then there is

a µ-conull G-invariant Borel set A such that G ↾ A admits a Borel
unfriendly coloring.

The proofs of Theorems 1 and 2 build on a potential function tech-
nique used in [9] (see also [2]) to study majority dynamics on infinite
graphs; in the context of finite graphs, these techniques go back to
Goles and Olivos [4]. Indeed, we show that in our settings (anti)-
majority dynamics converge to an unfriendly coloring. The combina-
torial nature of this technique allows us to extend our results to the
Borel setting.
Theorem 3. Suppose that G is a bounded-degree Borel graph of subex-
ponential growth. Then G admits a Borel unfriendly coloring.



UNFRIENDLY COLORINGS 3

A natural question remains open: is there a locally finite Borel graph
that does not admit a Borel unfriendly coloring? To the best of our
knowledge this is not known, even with regards to the restricted class
of bounded degree graphs. In contrast, Theorem 1 shows that for this
class unfriendly colorings exist in the measure preserving case. Still, we
do not know if the finite cost assumption in Theorem 1 is necessary, or
whether every locally finite measure preserving graph admits an almost
everywhere unfriendly coloring.

2. Proofs

Proof of Theorem 1. By Kechris-Solecki-Todorcevic [7, Proposition 4.5],
there exists a repetitive sequence of independent sets: a sequence (Xn)n∈N
of G-independent Borel sets so that each x ∈ X is in infinitely many Xn.
We will recursively build for each n ∈ N a Borel function cn : X → 2
which converge µ-almost everywhere to an unfriendly coloring of G.

The choice of c0 is arbitrary, but we may as well declare it to be the
constant 0 function.

Suppose now that cn has been defined. We build cn+1 by “flipping”
the color of vertices in Xn with too many neighbors of the same color,
and leaving everything else unchanged. More precisely, cn+1(x) = 1−
cn(x) if x ∈ Xn and |{y ∈ Gx : cn(x) ̸= cn(y)}| < |{y ∈ Gx : cn(x) =
cn(y)}|; otherwise, cn+1(x) = cn(x).

To show that this sequence cn converges µ-a.e. to an unfriendly col-
oring, we introduce some auxiliary graphs. Let Gn be the subgraph
of G containing exactly those edges between vertices of the same cn-
color, so x Gn y iff x G y and cn(x) = cn(y). Certainly for all n ∈ N,
cost(Gn) ≤ cost(G).

For n ∈ N, let Bn = {x ∈ X : cn(x) ̸= cn+1(x)}.

Claim. cost(Gn)− cost(Gn+1) ≥ µ(Bn).

Proof of the claim. Recall that, by the definition of cn+1, x ∈ Bn iff
x ∈ Xn and |{y ∈ Gx : cn(x) ̸= cn(y)}| < |{y ∈ Gx : cn(x) = cn(y)}|.
In particular, Bn ⊆ Xn and hence is G-independent. Thus Gn+1 =
Gn △ {(x, y) : x G y and {x, y} ∩ Bn ̸= ∅}. But for each x ∈ Bn,
the above characterization of membership in Bn ensures that its Gn+1-
degree is strictly smaller than its Gn-degree. The claim follows. □

In particular, since the sum telescopes we see
∑

n∈N µ(Bn) ≤ cost(G) <
∞. Hence the set C = {x ∈ X : x ∈ Bn for infinitely many n} is µ-null
by the Borel-Cantelli lemma. Let A = X \ [C]G, so A is µ-conull.

Claim. c is an unfriendly coloring of G ↾ A.
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Proof of the claim. Fix x ∈ A and fix k ∈ N sufficiently large so that
cn has stabilized for x and all its (finitely many) neighbors beyond k.
Fix n > k so that x ∈ Xn. Since cn(x) = cn+1(x), the definition of cn+1

implies that |{y ∈ Gx : cn(x) ̸= cn(y)}| ≥ |{y ∈ Gx : cn(x) = cn(y)}|.
But cn = c on Gx ∪ {x}, and hence c is unfriendly as desired. □

This completes the proof of the theorem. □

We next analyze the extent to which the measure-theoretic hypothe-
ses may be weakened in this argument. Note that the sequence cn of
colorings is defined without using the measure at all (in fact it is de-
termined by the graph G and the sequence (Xn) of independent sets);
the measure only appears in the argument that sequence converges to
a limit coloring. And even in this convergence argument, invariance
only shows up in the critical estimate cost(Gn)− cost(Gn+1) ≥ µ(Bn).

Definition 4. Suppose that G is a locally finite Borel graph on stan-
dard Borel X, that (Xn)n∈N is a sequence of G-independent Borel sets
so that each x ∈ X is in infinitely many Xn. We define the flip sequence
(cn)n∈N of Borel functions from X to 2 as follows:

• c0 is the constant 0 function,
• cn+1(x) = 1− cn(x) if x ∈ Xn and |{y ∈ Gx : cn(x) ̸= cn(y)}| <
|{y ∈ Gx : cn(x) = cn(y)}|; otherwise, cn+1(x) = cn(x).

Definition 5. Given a locally finite Borel graph G on X and a sequence
(Xn)n∈N of repetitive independent sets as above, we say that a Borel
measure µ on X is compatible with G and (Xn) if the corresponding
flip sequence cn converges on a µ-conull set.

The proof of Theorem 1 shows that whenever µ is a G-invariant Borel
probability measure with respect to which the average degree of G is
finite, then µ is compatible with every sequence of independent sets.
We seek to weaken the invariance assumption when G has bounded
degree.

Proposition 6. Suppose that G is a Borel graph on X with bounded
degree d, and that µ is a G-quasi-invariant Borel probability measure
with corrsponding Radon-Nikodym cocycle ρ. Suppose further that for
all (x, y) ∈ G, 1− 1

d
≤ ρ(x, y) ≤ 1+ 1

d
. Then µ is compatible with every

repetitive sequence of independent sets.

Theorem 2 is an immediate consequence of this proposition.
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Proof of Proposition 6. Put ε = 1
d
. Define a measure M on G by

putting for all Borel H ⊆ G,

M(H) =

∫
X

|Hx| dµ

This new measure M will replace the occurrences of cost in the proof
of Theorem 1.

Consider the flip sequence cn, and define corresponding graphs Gn ⊆
G by x Gn y iff x G y and cn(x) = cn(y). As before, let Bn denote those
x ∈ Xn for which cn+1(x) ̸= cn(x). Note that the “double counting”
that occurred in the proof of Theorem 1 may no longer be true double
counting, but the bound on ρ ensures that each edge is counted at most
(2 + ε) times and at least (2− ε) times.

Claim. M(Gn)−M(Gn+1) ≥ µ(Bn)

Proof of the claim. Partition Bn into finitely many Borel sets Ar,s where
x ∈ Ar,s iff x has r-many Gn neighbors and s-many Gn+1 neighbors (so
r > s and r + s ≤ d). We compute

M(Gn)−M(Gn+1) =

∫
X

|(Gn)x| − |(Gn+1)x| dµ

≥
∫
Bn

(2− ε)|(Gn)x| − (2 + ε)|(Gn+1)x| dµ

=
∑
r,s

∫
Ar,s

(2− ε)r − (2 + ε)s dµ

=
∑
r,s

∫
Ar,s

2(r − s)− ε(r + s) dµ

≥
∑
r,s

∫
Ar,s

2− dε dµ

= µ(Bn)

as required. □

The remainder of the argument is as in the proof of Theorem 1. □

Given Proposition 6, the proof of Theorem 3 is straightforward.

Proof of Theorem 3. Fix a degree bound d for G and put ε = 1
d
. It

suffices to construct for each x ∈ X a G-quasi-invariant Borel prob-
ability measure µx whose Radon-Nikodym cocycle is ε-bounded on G
such that µx({x}) > 0. If we do so, Proposition 6 ensures that the
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flip sequence cn converges µx-everywhere for each x, and thus it con-
verges everywhere. The limit is then an unfriendly coloring by the
same argument as in the final claim in the proof of Theorem 1.

To construct µx, first define a purely atomic measure νx supported
on the G-component of x by declaring νx({y}) = (1 + ε)−δ(x,y), where
δ denotes the graph metric. Subexponential growth of G ensures that
K =

∑
y∈[x]G νx({y}) < ∞. Finally, put µx = 1

K
νx. □
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