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ABSTRACT. Suppliers of differentiated goods make simultaneous pricing decisions,
which are strategically linked due to consumer preferences and the structure of pro-
duction. Because of market power, the equilibrium is inefficient. We study how a pol-
icymaker should target a budget-balanced tax-and-subsidy policy to increase welfare.
A key tool is a certain basis for the goods space, determined by the network of interac-
tions among suppliers. It consists of eigenbundles—orthogonal in the sense that a tax on
any eigenbundle passes through only to its own price—with pass-through coefficients
determined by associated eigenvalues. Our basis permits a simple characterization of
optimal interventions. For example, a planner maximizing consumer welfare should
tax eigenbundles with low pass-through and subsidize ones with high pass-through.
We interpret these results in terms of the network structure of the market.

1. INTRODUCTION

Market power and strategic pricing are significant in many intermediate and final
good markets. On the supply side, the technology of production creates strategic link-
ages: for example, when two intermediates are present in the same final goods, an
increase in one’s price reduces the other’s demand.1 On the demand side, the sub-
stitution patterns between goods also directly shape which firms are in competition.
The structure of such relationships determines how producers price, how surplus is
allocated among them, and the welfare implications of markets for consumers.

This paper presents a simple model in which different combinations of intermedi-
ate inputs go into producing a set of final goods, and the demands of these final goods
arise from the behavior of a representative consumer. Suppliers choose prices simulta-
neously. A special case of this model is a differentiated oligopoly. Another special case
is a supply network in which suppliers are interrelated because they are producing in-
puts for the same final goods, which have independent demands. We study the Nash
equilibrium of this pricing game. As suppliers have market power, the equilibrium
is typically inefficient.2 This creates the scope for targeted interventions that tax some
suppliers and subsidize others to further a social objective. We develop the analysis
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focusing on the objective of consumer surplus, but our results can be extended to other
objectives such as producer or aggregate surplus.

In the markets we study, the implications of taxing or subsidizing the suppliers
are complicated, since changes to firms’ costs affect the prices and quantities of other
firms’ through the network of relationships. We provide a compact and tractable rep-
resentation of these spillovers, permitting simple formulae for how cost changes pass
through to equilibrium prices. In particular, the interactions among suppliers are sum-
marized in a spillover matrix, each entry of which reflects the strategic interaction be-
tween two firms. This matrix induces a basis of eigenvectors (also called principal
components) of the goods space;3 we call the vectors in this basis eigenbundles.

The basis has three special properties. First, when the cost of one eigenbundle is
changed, the effect is to change equilibrium prices only of that eigenbundle. These eigen-
bundles therefore identify independent, or orthogonal, dimensions of the market, such
that the costs of one eigenbundle do not affect the prices of others. Second, the pass-
throughs associated with various eigenbundles can be calculated in terms of corre-
sponding eigenvalues of the spillover matrix. Third, the market induces a ranking
of pass-throughs: the eigenbundles with larger eigenvalues—which are more repre-
sentative (in a precise sense) of the input requirements of the market—are those with
smaller pass-throughs.

These properties permit us to express the effect of tax-subsidy schemes on prices
and on welfare in a form that facilitates a simple characterization of interventions that
maximize consumer surplus. Through the lens of our decomposition, the optimal pol-
icy may be described as follows: it collects tax revenue from the eigenbundles with
low pass-through, where the impact on prices and output is relatively small, and al-
locates them—via subsidies—to the eigenbundles with high pass-through, where the
impact on prices and output is relatively large.

1.1. Related literature. Our paper contributes to a literature on the structure and the-
oretical properties of market power. For an early theoretical paper see Dixit (1986);
more recent studies include, for example, Vives (1999) and Azar and Vives (2021). A
recent literature in macroeconomics and industrial organization uses network models
of differentiated oligopoly, with models similar to the one studied here, to provide
empirical estimates of welfare losses due to market power (see e.g., Pelligrino (2021)
and Ederer and Pelligrino (2021)).

Our paper makes two contributions to this literature. First, taking a network per-
spective, we provide a geometric approach to analyzing pass-through in the pricing
game with market power. This builds on work emphasizing the value of pass-through
as a conceptual tool (e.g., Weyl and Fabinger (2013) and Miklos-Thal and Shaffer
(2021)), and shows how it can be described tractably and intuitively in markets with
very rich heterogeneity. Second, motivated by the empirical research on welfare losses
due to market power, we apply our decomposition to characterize policy interventions
that maximize consumer surplus and shed light on the economic forces that make
them most effective.

The strategic interactions in the model may come from either the consumer’s pref-
erences or the structure of technology. The latter interpretation connects our work to
literature on input-output models. The canonical models in this literature (e.g., Ace-
moglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012)) assume competitive markets.

3That is, the space of goods produced by the strategic firms.
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A more recent work in this literature examines the role of market power (e.g., Baqaee
(2018), Grassi (2017) and Liu (2019) and Grassi and Sauvagnat (2019)). This work
highlights the importance of the interaction between market structure and produc-
tion networks in determining shock amplification and the desirability of appropriate
interventions. Our paper highlights the usefulness of a principal component decom-
position of cost changes in the construction of optimal balanced-budget interventions
to maximize consumer surplus.4

More generally, our paper contributes to the theory of network interventions; promi-
nent early contribution to this theory include Borgatti (2006) and Ballester, Calvó-
Armengol, and Zenou (2006).5 In a recent paper, Galeotti, Golub, and Goyal (2020)
study intervention in quadratic games. They use the singular value decomposition
of the interaction matrix for the study of (costly) interventions that alter the stand-
alone marginal benefits of individual activity. They assume that the costs are separa-
ble across individuals and increasing and convex in the magnitude of the intervention
(and are independent of the network). By contrast, in this paper, the costs of a sub-
sidy or the revenue of a tax depends on the entire network structure. This difference
is crucial; indeed, tax-subsidy intervention and budget-balanced interventions lie out-
side the scope of Galeotti, Golub, and Goyal (2020). Our results generate new insights:
for example, there is a threshold such that a planner subsidizes eigenbundles with
eigenvalues below a certain threshold and taxes the other eigenbundles.

2. MODEL

There is a finite set of final goods. Each final good is produced by combining subsets
of inputs—possibly in different proportions. Each input is produced by a supplier. The
production technology is summarized by a production network—a bipartite weighted
network whose nodes are suppliers and final goods. This network specifies how much
of each input is required to produce one unit of each final good. The combination of
demand, prices and the production network determine the demand for inputs.

We start by laying out the basic notation. This is followed by a discussion of how
changes in cost pass through to equilibrium prices. We illustrate the determinants of
this pass-through in two leading special cases: the case of independent demands (that
yields a supply chain example) and the case with a one-to-one mapping from input
supplier to final good (that yields the classical differentiated oligopoly model).

Symbols denoting vectors and matrices are in bold. For any matrix M , the symbol
mij stands for its element in the ith row and jth column, and MT denotes its transpose.
The symbol ⟨a, b⟩ denotes the dot product of a and b.

4Choi, Galeotti, and Goyal (2017) consider a related model with pure homogeneous products. Con-
dorelli, Galeotti, and Renou (2017) and Manea (2018) study bargaining in networks with intermediation.
See also Elliott and Galeotti (2019) for related arguments on how network methods can be useful for
competition authorities in developing antitrust investigations.

5The literature on this subject is very large. Other contributions of network intervention in models
of information diffusion, advertising, and pricing include Banerjee, Chandrasekhar, Duflo, and Jackson
(2013), Belhaj and Deroian (2017), Bloch and Querou (2013), Candogan, Bimpikis, and Ozdaglar (2012),
Demange (2017), Fainmesser and Galeotti (2017), Galeotti and Goyal (2009), Galeotti and Rogers (2013),
and Leduc, Jackson, and Johari (2017).
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2.1. Market structure. The set of final goods is F = {1, 2, . . . , F}; final goods are in-
dexed by f . The set of inputs is N = {1, 2, . . . , N}. Input i is produced by supplier
i. The production network is denoted by T , an N -by-F matrix with typical element
tif ≥ 0. The interpretation is that the production of one unit of good f ∈ F requires tif
units of each input i.

After all the suppliers simultaneously choose their prices {pi}i∈N , final goods are
produced and priced competitively.6 Thus the price of final good f equals its marginal
cost of production, which is the sum of the prices of the inputs needed to produce one
unit of the final good. That is, final goods’ prices are

P (p) = T Tp.

Final demands come from a representative consumer with a utility function U(·)
such that, for any given price vector, P = (Pf )f∈F , the demand profile solves

max
Q

U(Q)− ⟨Q,P ⟩. (1)

We will begin our analysis with a linear-quadratic specification of utility that will
give rise to linear demands. However, we will keep some formulas general when
possible with a view toward extending the analysis.

The consumer has (gross) utility for consuming a bundle Q of final goods,

U(Q) =
∑
f

βfQf −
1

2
QTBQ, (2)

where βf > 0 are positive constants and B is a given positive-definite matrix (Amir,
Erickson, and Jin (2017), Choné and Linnemer (2020), and Vives (1999)). Assuming
the consumer has sufficient income (a condition we will take for granted), this induces
linear demands Q : RF → RF where Qf (P ) is the quantity demanded of good f at the
profile of prices P , with

∂Qf/∂Pf ′ = (B−1)ff ′ and
∂2Qf

∂Pf∂Pf ′
= 0 for any f, f ′ ∈ F . (3)

The associated demand function for inputs is called q : RN → RN and can be written
as

q(p) := TQ(T Tp). (4)

When the consumer chooses optimal quantities Q(P ), a standard calculation (plug-
ging in the first-order conditions for optimization) her payoff is

U∗ =
1

2
Q(P )TBQ(P ). (5)

6The assumption that final goods are priced competitively allows us to focus on strategic compe-
tition between the suppliers. The analysis can be extended to the case in which firms producing final
goods also have market power.
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2.2. Equilibrium. We focus on (an interior pure-strategy Nash) equilibrium p∗ of the
price setting game between the suppliers. Supplier i has an input with a constant
marginal cost of ci. The first order conditions that characterize the equilibrium are:

qi(p
∗) +

∂qi(p
∗)

∂pi
(p∗i − ci) = 0 for all i ∈ N . (6)

We assume that this equilibrium exists and is unique. Slightly abusing terminology,
we denote the equilibrium prices p∗, quantities q(p∗), final good prices T Tp∗, and final
good quantities Q(T Tp∗) by p, q,P and Q, respectively.

We are interested in how an arbitrary change in production costs,

ċ := (ċ1, ċ2, . . . , ċN),

passes through to equilibrium prices, and how it changes welfare outcomes.

Totally differentiating (6) around the equilibrium p yields:∑
j∈N

∂qi(p)

∂pj
ṗj +

∂qi(p)

∂pi
(ṗi − ċi) = 0. (7)

This equation suggests that it will be useful to define the Jacobian of the vector q in
the prices p,

Dij =
∂qi(p)

∂pj
.

Then we have

Lemma 1. The Jacobian can be expressed as follows:

D = TB−1T T.

This follows immediately from Equation 3 characterizing final demand, Equation 4
linking that to intermediate demand, and the chain rule.

We will now introduce a normalization that will be very useful in the rest of our
analysis. Note that if we rescale the units of intermediates, letting new units be defined
by q̃i = ciqi, then we get a corresponding input requirements matrix T̃ = CT , where C
is the matrix with c on the diagonal. This, in turn, is associated with a new Jacobian,
D̃ = CTT TC. By choosing C appropriately, we may therefore make all diagonal
entries of D̃ equal to −1.

Thus, we may assume the following normalization property without loss of gener-
ality:

Property A. Dii = −1 for each i ∈ N

Using this assumption and rearranging Equation 6, we get

ṗi = ċi −
∑
j∈N

Dij ṗj (8)

By linearity of demand, this formula holds for all changes ċ when solutions remain
interior, not just small changes.

The strategic relations between any two suppliers i and j are captured by the sign
of Dij . We shall say that inputs i and j are strategic substitutes if Dij is positive and
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strategic complements if Dij is negative. The pass-through can be expressed in matrix
form as follows:

[I +D]ṗ = ċ. (9)

2.3. Two examples. We illustrate the scope of the model by discussing two examples.

2.3.1. Differentiated oligopoly. When the production network T is the identity I , the
pricing game between suppliers boils down to a classical differentiated oligopoly game
(e.g., Vives (1999) and Choné and Linnemer (2020)). In particular, we can identify each
supplier i with a final good f—whose only input is i—and the demand for supplier i
corresponds to the demand for its associated final good f .

The Jacobian matrix ∆ is defined by ∆ff ′ = ∂Qf/∂Pf ′ . We may assume without loss
of generality, by rescaling units, that ∆ff = −1 for each f .7 The matrix of strategic
interactions among suppliers is then D = −∆ which satisfies Property A.

2.3.2. Supply network. A different case of the model puts the focus on the structure of
production, given by T . To this end, we assume that final good demands are linear,
symmetric, and independent, so that Qf = 1− Pf for each final good f .

In this case, the Jacobian matrix ∆, defined by ∆ff ′ = ∂Qf/∂Pf ′ , is equal to −I ,
where I denotes the identity matrix. Recall that the demand for inputs is given by
q(p) = TQ(T Tp). So for any input i,

∂qi(p)

∂pj
=
∑
f

tif
∂Qf (P )

∂Pf

∂Pf

∂pj
= −

∑
f

tif tjf ,

where we have used the assumption that Qf depends only on Pf (with a slope of −1) to
derive the first equality, and the assumption of competitive final good pricing to obtain
the second equality. By choosing units appropriately,8 we may assume

∑
f t

2
if = 1 for

all i in N ; this yields
D = TT T.

Note that D is a positive and symmetric matrix, and also positive semidefinite, so
Property A is satisfied.

Note that, via the production network, all inputs are complements—in the sense that,
everything else equal, when the price of one of them increases, the quantity demanded
of all the others decreases. The strength of this complementarity is ⟨ti, tj⟩ ∈ [0, 1]
and it equals 1 when input i and input j are used exactly in the same way for the
production of every final good, whereas it equals 0 when input i and input j are never
used together to produce any of the final goods. More generally, the dot product ⟨ti, tj⟩
is a measure of the angle between ti and tj , called their cosine similarity.

It is useful to rewrite (9) as ṗ = ċ − TT Tṗ. Thus, the complementarity of all inputs
in production implies strategic substitutes in the pricing game: when the price of one of
them increases, the optimal price of any other input j decreases. Here Dij = ⟨ti, tj⟩ ∈
[0, 1] again gives the strength of this substitutability.

7To this end, define Q̃f = cfQf and P̃f to be the price per new unit. Then ∂Q̃f/∂P̃f = c2f Q̃f/∂Pf so
by choosing cf appropriately, one can achieve any desired scaling.

8This simply amounts to scaling the units of intermediate i by an appropriate ci, which scales the
sum

∑
f t

2
if = 1 by c−2

i .
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3. PASS-THROUGH IN TERMS OF EIGENBUNDLES

In this section, we express the pass-throughs of cost changes in a compact way by
changing to a convenient basis of eigenbundles.

Since it is symmetric, the matrix D is orthogonally diagonalizable. That is, there
exists an N ×N orthonormal matrix U such that

D = UΣUT,

where Σ is an N × N diagonal matrix whose ℓth diagonal element is the ℓth-largest
eigenvalue of D, called σℓ; it is nonnegative because D is positive semidefinite. The ℓth

column uℓ is the eigenvector of D corresponding to σℓ. We call this the ℓth eigenbundle
of D. These vectors have norm 1 and are orthogongal to each other.

The usefulness of the eigenbundles is that—as Proposition 1 below states—a change
in the cost of one of them affects only its own prices with a certain coefficient, called the
pass-through. The pass-throughs are ordered according to their corresponding eigen-
values: the larger is the ℓth eigenvalue σℓ, the lower is the pass-through from changes
in the cost of the ℓth eigenbundle to its equilibrium price.

For any x ∈ RN , let x denote UTx; that is, x is the profile x expressed in the basis
U . For each ℓ = 1, 2, . . . , N , we choose the sign of uℓ so that q

ℓ
≥ 0.

Proposition 1. Consider any change in costs, (ċ1, ċ2, . . . , ċN). The change in the equi-
librium price of the ℓth eigenbundle has the following form:

ṗ
ℓ
= λℓċℓ. (10)

where λℓ =
1

1+σℓ
is increasing in ℓ.

Proof. From (10) we get
(
I +UΣUT

)
ṗ = ċ. Multiplying both sides by UT we get

UT
(
I +UΣUT

)
UUTṗ = UTċ, that is, ṗ = (I +Σ)−1ċ. □

The following result calculates cost changes pass through to prices as a function of
each supplier’s representation in all the eigenbundles.

Corollary 1. The pass-through of a unit increase ċ = 1j in supplier j’s cost on i’s
equilibrium price is

ṗi =
∑
ℓ

uℓ
jλℓu

ℓ
i . (11)

Each element of this sum is a product of three terms. First, uℓ
j is the effect of supplier j’s

cost on the cost of the ℓth eigenbundle. Second, the cost of this eigenbundle increases
its price by a factor λℓ. Third, the increase in the price of ℓth eigenbundle increases
supplier i’s price by uℓ

i .

Proof. Since ṗi =
∑

ℓ u
ℓ
i ṗℓ, while ṗ

ℓ
= λℓċℓ, and ċℓ =

∑
j u

ℓ
j ċj , we have

ṗi =
∑
ℓ

uℓ
iλℓ

∑
j

uℓ
j ċj,

which is the desired expression. □
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3.1. The supply network case and the singular value decomposition. In the supply
network special case discussed in subsubsection 2.3.2, our decomposition into eigen-
bundles has an interpretation in terms of the singular value decomposition of T , which
will prove useful technically.

The singular value decomposition (SVD) of T is T = USV T, where

(a) U is a matrix of orthonormal eigenvectors of TT T;
(b) V is an F × F matrix whose columns are orthonormal eigenvectors of T TT ;
(c) S is an N × F diagonal matrix whose ℓth diagonal entry is sℓ =

√
σℓ.

The columns of U , the eigenbundles, are also called the left singular vectors of T .9 The
columns of V are called the right singular vectors of T . The numbers sℓ are called the
singular values of T . An interpretation of the SVD is that for each eigenbundle uℓ of
intermediate goods, it identifies a corresponding bundle vℓ of final goods such that
Tvℓ = sℓuℓ, allowing us to “translate eigenbundles into the final goods space” if we
wish. This will prove useful in some of the proofs.

4. TAXES AND SUBSIDIES

We now examine the ways in which taxes and subsidies can alleviate the ineffi-
ciency created by market power. Specifically, we will study the taxes and subsidies
that maximize consumers surplus.10 We develop the basic Pigouvian theory of such
interventions through the lens of our network formalism.

Let τ = {τ1, . . . , τn} be the profile of per-unit taxes introduced by the planner. In
general, the planner may find it optimal to impose positive taxes on some suppliers
and negative taxes (that is, subsidies) on others. For concreteness, we assume that the
planner must run a balanced budget (i.e., ⟨τ , q⟩ = 0).11

The characterizations of pass-through provide a simple way to study the optimal
policy. The decomposition of the matrix of strategic interactions provides an ordering
of pass-throughs. Equipped with this ordering, a natural guess would be that, in order
to maximize consumer surplus, the planner would want to subsidize the high pass-
through eigenbundles and tax the low pass-through eigenbundles. As Proposition 2
highlights, this is indeed what the optimal tax scheme does.

Clearly, if the eigenvalue σℓ is the same for all dimensions ℓ with q
ℓ
̸= 0, the planner

cannot do anything useful, because all relevant pass-throughs are the same. Let us
assume that this is not the case, and let K = 1

4

∑
ℓ q

2
ℓ

1+σℓ

σℓ
. We denote by z the Lagrange

multiplier of the budget constraint; this is the shadow price of public funds in our
optimization problem.

Proposition 2. The optimal policy taxes each eigenbundle ℓ with λℓ <
z
2K

and subsi-
dizes each eigebundle ℓ with λℓ >

z
2K

.

9When D = TT T, using the singular value decomposition of T yields the form D = UΣUT,
recovering the expression at the beginning of this section.

10A similar approach can be used to study other instruments (such as taxes on final goods) and other
objectives (like producer or total surplus).

11The optimal policy is qualitatively similar if we assume that the budget is not zero.
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Online supplier 1 Online supplier 2

Off-line supplier 3 Off-line supplier 4

FIGURE 1. Illustration of strategic price relationships within and across
on-line and off-line suppliers: Dashed (thick) links denote strategic com-
plements (substitutes).

Proof. As we show in the appendix, the tax on eigenbundle uℓ is

1 + σℓ√
σℓ

·
q
ℓ

2
· z − 2Kλℓ

z −Kλℓ

, (12)

where the shadow price z ≥ 0 is implicitly defined by∑
ℓ

q2
ℓ

Kλℓ

σℓ(z −Kλℓ)2
= 4.

Moreover, for all ℓ with q
ℓ
̸= 0, we have that z > Kλℓ, so the sign of (12) coincides with

the sign of z − 2Kλℓ. □

5. ILLUSTRATIONS

In this section, we apply our results to describe pass-through and optimal tax-subsidy
interventions in the context of two applications—differentiated oligopoly and supply
networks.

5.1. Differentiated oligopoly: We present a stylized model of a four-firm differenti-
ated oligopoly. Suppose that each supplier produces one final good. Two of these
goods are sold online while the other two are sold off-line. Suppose that a good sold
online complements other goods sold online, and is a substitute of goods sold offline.
This means that the prices of the two online goods (or the two offline goods) are strate-
gic substitutes, while the prices of an online good and an offline good are strategic
complements. Figure 1 represents the network of suppliers with four goods.

We now introduce some numbers for illustration. Let the matrix of strategic inter-
actions among suppliers be given by

D =


1 1/2 −1/2 −1/2
1/2 1 −1/2 −1/2
−1/2 −1/2 1 1/2
−1/2 −1/2 1/2 1

 .

The spectral decomposition of this matrix is UΣUT, where (to one decimal place)

Σ =


5/2 0 0 0
0 1/2 0 0
0 0 1/2 0
0 0 0 1/2

 and U =


−.5 −.3 −.2 .8
−.5 −.3 .8 −.2
.5 .3 .6 .6
.5 .9 0 0

 .
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Supplier 1

Good 1

Supplier 2

Good 2

Supplier 3

(A) Supply network W .

Supplier 1 Supplier 2

Supplier 3

(B) The similarity network TT T

(omitting self-edges).

FIGURE 2. From production technology to the similarity network

In this case, Proposition 1 tells us that the pass-through on the first eigenbundle u1 is

λ1 =
1

1 + σ1

=
1

1 + 5/2
=

2

7
≈ 0.28,

while the pass-through on the other eigenbundles uℓ with ℓ > 1 is

λℓ =
1

1 + σℓ

=
1

1 + 1/2
=

2

3
≈ 0.67.

Hence, by Proposition 2, in order to maximize consumer welfare, the optimal policy
taxes the first eigenbundle—the one with relatively low pass through—in order to
subsidize the others. To make this concrete, consider the case in which q1 = 2 and
q2 = q3 = q4 = 1. The optimal policy is as follows, which we give in terms of the
eigenbundles but also translate into the original coordinates:

q
1
τ 1 = .6 and q1τ1 = .8

q
2
τ 2 = −.2 and q2τ2 = .5

q
3
τ 3 = −.1 and q3τ3 = −.7

q
4
τ 4 = −.3 and q4τ4 = −.7

The optimal policy taxes the two online suppliers 1 and 2, and subsidizes the offline
suppliers 3 and 4. The fact that the optimal policy taxes the largest supplier 1 might
seem counterintuitive: Wouldn’t it be optimal to try to lower the price of the largest
supplier by subsidizing it? The catch is that a per-unit subsidy on the large supplier
is relatively expensive. Instead, the optimal policy induces a reduction in the price of
supplier 1 indirectly: Taxing supplier 2 leads to a price reduction by the large supplier
1 (due to strategic substitutability between their prices). Similarly, the subsidies on
supplier 3 and 4 lead to a lowering of the price of supplier 1 (due to strategic comple-
mentarity between 1 and each of 3 and 4). Hence, the optimal policy indirectly induces
price reductions by the large supplier 1 via the strategic spillovers caused by the tax on
supplier 2 and the subsidies on suppliers 3 and 4. Indeed, the optimal policy achieves
this while also raising funds by taxing the large supplier 1.

Using this intuition, we can see that the optimal policy does the opposite when there
are instead strategic complementarities within sectors and strategic substitutabilities
across sectors. In this case, to induce a reduction in supplier 1’s price via indirect
effects, the optimal policy taxes the offline sector and subsidizes the small online sup-
plier.
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5.2. Supply network. Next consider a supply network with three intermediate good
suppliers and two final goods:

T =

 1 0
0 1

1/
√
2 1/

√
2

 and TT T =

 1 0 1/
√
2

0 1 1/
√
2

1/
√
2 1/

√
2 1


Figure 2a depicts the production network T and Figure 2b depicts the similarity net-
work, TT T. Input 1 is used only in the production of final good 1, while input 2 is used
only in the production of final good 2. As a result, D12 = 0. Input 3 is used for the
production of both final goods. Hence, inputs 1 and 3 (and 2 and 3) are strict strategic
substitutes (i.e., D13 > 0 and D23 > 0).

When final demands are independent, D = TT T. The spectral decomposition of
this matrix D is

D = UΣUT, where Σ =

 2 0 0
0 1 0
0 0 0

 and U =

 1
2

1√
2

1
2

1
2

− 1√
2

1
2

1√
2

0 − 1√
2

 .

In this case, Proposition 1 tells us that the pass-through of the first eigenbundle u1

is λ1 = 1
3

while the pass-through of the second eigenbundle u2 is λ2 = 1
2
. Hence,

by Proposition 2, in order to maximize consumer welfare, the optimal policy taxes the
first eigenbundle—the one with relatively low pass through—in order to subsidize the
others.

To make this concrete, assume that final demands are given by: Q1 = 1 and Q2 =
α ∈ [0, 1]. Using the matrix T , we then have the demands for inputs are

q1 = 1, q2 = α, q3 =
1 + α√

2
.

Using q
ℓ
=
∑

i u
ℓ
iqi yields these quantities in the basis of eigenbundles:

q
1

= 1
2
+ 1

2
α + 1+α

2
= 1 + α

q
2

= 1√
2
− 1√

2
α = 1√

2
(1− α)

q
3

= 1
2
+ 1

2
α− 1+α

2
= 0

We next turn to optimal taxes and subsidies. When α = 1, both q
2

and q
3

are zero.
In this case, the planner cannot improve consumer welfare, because the system is ef-
fectively one-dimensional.

Assuming instead that α < 1, as q
3
= 0, it follows from Proposition 2, that q

1
τ 1 > 0

and q
2
τ 2 < 0. Since q

1
> 0 and q

2
> 0, it follows that τ 1 > 0 and τ 2 < 0. Using that

τi =
∑

ℓ u
ℓ
iτ ℓ, and that τ 3 = 0, we see that

τ1 =
1

2
τ 1 +

1√
2
τ 2, τ2 =

1

2
τ 1 −

1√
2
τ 2 and τ3 =

1√
2
τ 1.

The optimal policy taxes suppliers 2 and 3 and subsidizes supplier 1. Note that taxing
supplier 3 not only raises tax money to be able to subsidize the other two suppliers,
but it also achieves an indirect reduction of the prices of both suppliers 1 and 2 (via
the strategic substitutability between supplier 3 and the other two suppliers).

This example illustrates how the nature of pass-throughs interacts with the size of
suppliers to determine the optimal taxes and subsidies. On the one hand, note that
when α = 1, there is heterogeneity in both pass-through and in quantities, but their
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interaction implies that the planner cannot improve welfare using a budget-neutral
policy. On the other hand, when α < 1, suppliers 1 and 2 are symmetric in terms
of pass-through, but the optimal policy of subsidizing 1 and taxing 3 does increase
consumer welfare.

6. CONCLUSION

The paper studies firms interacting strategically in an environment with rich het-
erogeneity. We bring a network perspective to the interactions between the different
firms. The key contribution is to decompose any cost change into components that
have a very convenient form: for these components, there is an unambiguous rank-
ing of pass-throughs from cost changes to equilibrium prices. As an application, we
show how a policymaker can use this ranking to design a tax policy that maximizes
consumer welfare: The optimal policy leverages the strategic interactions among pro-
ducers (in particular, that taxes on some dimensions have a higher pass-through to
equilibrium prices) to tax some producers in order to use the tax revenue to subsi-
dize other producers. The fact that the deadweight loss from taxation increases as a
quadratic function of its size restricts the size of this tax program and its associated
consumer surplus gains.

In this paper we have worked with linear demands for simplicity. In ongoing work,
we extend our analysis to more general settings. The key idea is to consider small
tax changes around a given status quo. This builds on a large literature on the so-
called “tax reform approach” initiated by Feldstein (1976) and Diewert (1978), Dixit
(1979) and Tirole and Guesnerie (1981). We offer a new foundation for the tax reform
approach: reform is implemented with some noise and the policymaker is averse to
variance in the outcome. In this analysis, we derive a very similar characterization
for the optimal tax/subsidy policy in terms of the spectral decomposition of demand
spillovers. The analysis of small policy changes actually makes many of the character-
izations simpler.

REFERENCES

ACEMOGLU, D., V. M. CARVALHO, A. OZDAGLAR, AND A. TAHBAZ-SALEHI (2012):
“The network origins of aggregate fluctuations,” Econometrica, 80, 1977–2016.

AMIR, R., P. ERICKSON, AND J. JIN (2017): “On the microeconomic foundations of
linear demand for differentiated products,” Journal of Economic Theory, 169, 641–665.
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APPENDIX A. PROOFS

A.1. A canonical market. A key technical step is to transform an arbitrary environ-
ment satisfying our assumptions into an isomorphic canonical form, that of subsub-
section 2.3.2.

Start with a general market satisfying our assumptions, where

U(Q) =
∑
f

βfQf −
1

2
QTBQ

is the utility over final goods. This is associated with a Jacobian matrix ∆ such that

∆ff ′ = ∂Qf/∂Pf ′ ,

and ∆ = B−1, where B is positive definite. In addition, there is a supply network T .
Let D̂ be defined by D̂ij = ∂qi(p)/∂pi. We can calculate that

D̂ = T∆T T.

Let Diag(D̂) be D̂ with all off-diagonal entries set to zero. Then we can see from the
definition of D that

D = Diag(D̂)−1D̂.

The assumption that D is positive semidifinite, and in particular symmetric, implies
that the diagonal entries of D̂ are all equal; we may (by rescaling units) take them all
to be −1. Then

D = −T∆T T,

which is positive definite under our assumptions.

Consumer welfare when the consumer makes her optimal demand given prices P
is

U∗ =
1

2
Q(P )T∆−1Q(P ).

Now, we will introduce a reparameterization which we will denote by tildes. Because
B is positive definite, so is its inverse ∆, and ∆ therefore has a positive definite square
root, which we write ∆1/2. Let

Q̃ = ∆−1/2Q and T̃ = T∆1/2.

Then
Ũ∗ = U∗ =

1

2
Q̃TQ̃

and
D = D̃ = T̃ TT̃ .

The reparameterization makes the final goods independent, and all the interactions in
the consumption of final goods are encoded in T̃ .
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This calculation shows that, under our standing assumption that D is a positive
definite matrix, a linear transformation of final goods allows us to assume that final
goods have independent, unit-slope demands (∆ = −I) without changing either the
game among suppliers of intermediates (given by D) or the consumer surplus func-
tion when the consumer best-responds (U∗). We will therefore work with an economy
satisfying these assumptions throughout the proofs, which permits an exposition with
some convenient geometric interpretations.

A.2. Some useful definitions and identities. Throughout this section, we repeatedly
use the fact that eigenbundles are orthonormal. Moreover, we will use the singular
vector basis for the final goods space (recall subsection 3.1). For any X ∈ RF , let X
denote V TX ; that is, X is the profile X expressed in the basis V .

We have that

T =
∑
ℓ

sℓu
ℓ(vℓ)T and T T =

∑
ℓ

sℓv
ℓ(uℓ)T,

and that

TT T =
∑
ℓ,m

sℓu
ℓvℓTsmv

m(um)T =
∑
ℓ

s2ℓu
ℓ(uℓ)T.

Furthermore, define M := (I + TT T)−1 and note that

M =
∑
ℓ

1

1 + s2ℓ
uℓ(uℓ)T.

Definition 1. Let τ =
∑

ℓ xℓu
ℓ; that is, xℓ denotes the tax on the eigenbundle uℓ.

We have that Mτ =
∑

ℓ
1

1+σℓ
uℓ(uℓ)T

∑
m xmu

m =
∑

ℓ
1

1+σℓ
xℓu

ℓ, so

DMτ =
∑
ℓ

σℓ

1 + σℓ

xℓu
ℓ

Definition 2. Let Q =
∑

ℓ Qℓ
vℓ and q =

∑
ℓ qℓu

ℓ, so that Q
ℓ

and q
ℓ

denote the amount
of bundle vℓ and uℓ produced, respectively.

Note that q = TQ =
∑

ℓ sℓQℓ
uℓ, so q

ℓ
= sℓQℓ

. We may choose the orientations
(multiplying them by −1 if necessary) of the eigenbundles so that q

ℓ
≥ 0, and hence

also that Q
ℓ
≥ 0, for all ℓ.

A.3. Proofs of the main results. We are now ready to analyze the optimization prob-
lem at the center of our results.

A.3.1. Rewriting the optimal tax problem.

Lemma 2. We can rewrite the optimal tax problem as

Maximize
dℓ

∑
ℓ(dℓ +Q

ℓ
)2

subject to
∑

ℓ

(dℓ+Q
ℓ
/2)2

Kλℓ
= 1,

(13)

where dℓ := −xℓ
sℓ

1+s2ℓ
is the change in the amount of the quantity of the bundle vℓ

induced by the optimal policy.
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Remark 1. Note that the optimization problem (13) amounts to choosing the quantity
profile that is furthest from the origin on the ellipsoid with center Q/2 and whose axis
ℓ is in the direction vℓ and has length

√
Kλℓ.

Proof of Lemma 2. The consumer surplus associated with final good f is 1
2
Q2

f , so 2CS =∑
f Q

2
f . Hence, the increase ∆CS in consumer surplus is proportional to 2⟨Q,∆Q⟩ +

⟨∆Q,∆Q⟩, where Q denotes the initial profile of final good quantities (with τ = 0),
and ∆Q denotes the change in Q induced by τ . Since Q := 1− P and ∆P = T TMτ ,
we have that ∆Q := −T TMτ . Hence, our objective is to maximize

−2
〈
Q,T TMτ

〉
+
〈
T TMτ ,T TMτ

〉
The budget-balance condition is

∑
i τiqi = 0, or ⟨q, τ ⟩ = 0, which, using that q = TQ

and that Q = 1−T Tp, we can write as
〈
T (1− T Tp), τ

〉
= 0, or

〈
TQ− TT TMτ , τ

〉
=

0. Hence, our problem is

Maximize − 2
〈
Q,T TMτ

〉
+
〈
T TMτ ,T TMτ

〉
s.t. ⟨TQ, τ ⟩ −

〈
TT TMτ , τ

〉
= 0,

(14)

which, using our definitions above, we can rewrite as

Maximize − 2

〈∑
ℓ

Q
ℓ
vℓ,
∑
ℓ

sℓ
1 + s2ℓ

xℓv
ℓ

〉
+

〈∑
ℓ

sℓ
1 + s2ℓ

xℓv
ℓ,
∑
ℓ

sℓ
1 + s2ℓ

xℓv
ℓ

〉

subject to

〈∑
ℓ

sℓQℓ
uℓ,
∑
ℓ

xℓu
ℓ

〉
−

〈∑
ℓ

s2ℓ
1 + s2ℓ

xℓu
ℓ,
∑
ℓ

xℓu
ℓ

〉
= 0

or, equivalently,

Maximize
∑
ℓ

[
−2Q

ℓ

sℓ
1 + s2ℓ

xℓ +

(
sℓ

1 + s2ℓ

)2

x2
ℓ

]

subject to
∑
ℓ

[
Q

ℓ
sℓxℓ −

s2ℓ
1 + s2ℓ

x2
ℓ

]
= 0

which is equivalent to (13). □

A.3.2. Optimal taxes as a function of Lagrange multiplier. The Lagrangian corresponding
to (13) is

L =
∑
ℓ

(
dℓ +Q

ℓ

)2
− z

(∑
ℓ

(dℓ +Q
ℓ
/2)2

Kλℓ

− 1

)
. (15)

The first-order condition with respect to dℓ gives

dℓ +Q
ℓ
= z

dℓ +Q
ℓ
/2

Kλℓ

or, assuming that Kλℓ ̸= z (which we will verify below),

dℓ = −
Q

ℓ

2

z − 2Kλℓ

z −Kλℓ

(16)
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or, using that dℓ := −xℓ
sℓ

1+s2ℓ
,

xℓ =
1 + s2ℓ
s2ℓ

Q
ℓ

2

z − 2Kλℓ

z −Kλℓ

(17)

Proposition 3 below says that, if Q
ℓ
> 0, then 0 < Kλℓ

z
< 1, so (17) above implies that

xℓ > 0 as long as λℓ <
z
2K

, and xℓ < 0 as long as λℓ >
z
2K

.

A.3.3. Solving for the Lagrange multiplier. Combining (16) with the budget constraint∑
ℓ

(dℓ +Q
ℓ
/2)2

Kλℓ

= 1

and maintaining the assumption that Kλℓ ̸= z, we get that

K
∑
ℓ

λℓ

(
Q

ℓ

2

1

z −Kλℓ

)2

= 1. (18)

Proposition 3. Equation (18) has a strictly positive root z, satisfying, for all ℓ with
Q

ℓ
> 0,

z > Kλℓ.

Moreover, this is the unique real root.

Proof. The left-hand side of (18) asymptotes to infinity as z → Kλℓ for each ℓ with
Q

ℓ
> 0, asymptotes to 0 as z → ∞, and is decreasing in z when z > Kλℓ′ , where ℓ′

denotes the largest component ℓ with Q
ℓ
> 0. Hence, there exists a strictly positive

root z of (18), satisfying, for all ℓ with Q
ℓ
> 0, z > Kλℓ. Uniqueness follows from the

fact that, by (16), dℓ is strictly decreasing in z when Q
ℓ
> 0, and that dℓ is uniquely

pinned down, since there is a unique point on the ellipsoid described in Remark 1 that
is furthest from the origin. □
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