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CHAPTER 1

Introduction

1.1. Modeling opinion exchange

The exchange of opinions between individuals is a fundamental so-
cial interaction that plays a role in nearly any social, political and
economic process. While it is unlikely that a simple mathematical
model can accurately describe the exchange of opinions between two
people, one could hope to gain some insights on emergent phenomena
that affect large groups of people.

Moreover, many models in this field are an excellent playground
for mathematicians, especially those working in probability, algorithms
and combinatorics. The goal of this survey is to introduce such models
to mathematicians, and especially to those working in discrete mathe-
matics, information theory, optimization, probability and statistics.

1.1.1. Modeling approaches. Many of the models we discuss in
the survey comes from the literature in theoretical economics. In mi-
croeconomic theory, the main paradigm of modeling human interaction
is by a game, in which participants are rational agents, choosing their
moves optimally and responding to the strategies of their peers. A
particularly interesting class of games is that of probabilistic Bayesian
games, in which players also take into account the uncertainty and
randomness of the world. We study Bayesian models in Section 3.

Another class of models, which have a more explicit combinatorial
description, are what we refer to as heuristic models. These consider
the dynamics that emerge when agents are assumed to utilize some
(usually simple) update rule or algorithm when interacting with each
other. Economists often justify such models as describing agents with
bounded rationality. We study such models in Section 2.

It is interesting that both of these approaches are often justified
by an Occam’s razor argument. To justify the heuristic models, the
argument is that assuming that people use a simple heuristic satisfies
Occam’s razor. Indeed, it is undeniable that the simpler the heuristic,
the weaker the assumption. On the other hand, the Bayesian argument
is that even by choosing a simple heuristic one has too much freedom
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2 1. INTRODUCTION

to reverse engineer any desired result. Bayesians therefore opt to only
assume that agents are rational. This, however, may result in extremely
complicated behavior.

There exists several other natural dichotomies and sub-dichotomies.
In rational models, one can assume that agents tell each other their
opinions. A more common assumption in Economics is that agents
learn by observing each other’s actions; these are choices that an indi-
vidual makes that not only reflect their belief, but also carry potential
gain or penalty. For example, in financial markets one could assume
that traders tell each other their value estimates, but a perhaps more
natural setting is that they learn about these values by seeing which
actual bids their peers place, since the latter are costly to manipulate.
Hence the adage “actions speak louder than words.”

Some actions can be more revealing than others. A bid by a trader
could reveal the value the trader believes the asset carries, but in a
different setting it could perhaps just reveal whether the trader thinks
that the asset is currently overpriced or underpriced. In other models
an action could perhaps reveal all that an agent knows. We shall see
that widely disparate outcomes can result in models that differ only by
how revealing the actions are.

Although the distinction between opinions, beliefs and actions is
sometimes blurry, we shall follow the convention of having agents learn
from each other’s actions. While in some models this will only be a
matter of nomenclature, in others this will prove to be a pivotal choice.
The term belief will be reserved for a technical definition (see below),
and we shall not use opinion, except informally.

1.2. Mathematical Connections

Many of the models of information exchange on networks are inti-
mately related to nice mathematical concepts, often coming from prob-
ability, discrete mathematics, optimization and information theory. We
will see how the theories of Markov chains, martingale arguments, in-
fluences and graph limits all play a crucial role in analyzing the models
we describe in these notes. Some of the arguments and models we
present may fit well as classroom materials or exercises in a graduate
course in probability.

1.3. Related Literature

It is impossible to cover the huge body of work related to informa-
tion exchange in networks. We will cite some relevant papers at each
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section. Mathematicians reading the economics literature may benefit
from keeping the following two comments in mind:

• The focus in economics is not the mathematics, but the eco-
nomics, and in particular the justification of the model and
the interpretation of the results. Thus important papers may
contain little or no new mathematics. Of course, many papers
do contain interesting mathematics.

• For mathematicians who are used to models coming from nat-
ural sciences, the models in the economics literature will often
look like very rough approximation and the conclusions drawn
in terms of real life networks unjustified. Our view is that
the models have very limited implication towards real life and
can serve as most as allegories. We refer the readers who are
interested in this point to Rubinstein’s book “Economic Fa-
bles” [40].

1.4. Framework

The majority of models we consider share the a common underlying
framework, which describes a set of agents, a state of the world, and
the information the agents have regarding this state. We describe it
formally in Section 1.5 below, and shall note explicitly whenever we
depart from it.

We will take a probabilistic / statistical point of view in studying
models. In particular we will assume that the model includes a ran-
dom variable S which is the true state of the world. It is this S that all
agents want to learn. For some of the models, and in particular the ra-
tional, economic models, this is a natural and even necessary modeling
choice. For some other models - the voter model, for example (Sec-
tion 2.2), this is a somewhat artificial choice. However, it helps us take
a single perspective by asking, for each model, how well it performs as
a statistical procedure aimed at estimating S. Somewhat surprisingly,
we will reach similarly flavored conclusions in widely differing settings.
In particular, a repeated phenomenon that we observe is that egalitar-
ianism, or decentralization facilitates the flow of information in social
networks, in both game-theoretical and heuristic models.

1.5. General definitions

1.5.1. Agents, state of the world and private signals. Let V
be a countable set of agents, which we take to be {1, 2, . . . , n} in the
finite case and N = {1, 2, . . .} in the infinite case. Let {0, 1} be the set
of possible values of the state of the world S.
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Let Ω be a compact metric space equipped with the Borel sigma-
algebra. For example, and without much loss of generality, Ω could be
taken to equal the closed interval [0, 1]. Let Wi ∈ Ω be agent i’s private
signal, and denote W̄ = (W1,W2, . . .).

Fix µ0 and µ1, two mutually absolutely continuous measures on Ω.
We assume that S is distributed uniformly, and that conditioned on S,
the Wi’s are i.i.d. µS: when S = 0 then W̄ ∼ µV

0 , and when S = 1 then
W̄ ∼ µV

1 .
More formally, let δ0 and δ1 be the distributions on {0, 1} such that

δ0(0) = δ1(1) = 1. We consider the probability space {0, 1}×ΩV , with
the measure P defined by

P = Pµ0,µ1,V = 1
2
δ0 × µV

0 + 1
2
δ1 × µV

1 ,

and let

(S, W̄ ) ∼ P.

1.5.2. The social network. A social network G = (V,E) is a
directed graph, with V the set of agents. The set of neighbors of i ∈ V
is ∂i = {j : (i, j) ∈ E} ∪ {i} (i.e., ∂i includes i). The out-degree of i
is given by |∂i|. The degree of G is give by supi∈V |∂i|.

We make the following assumption on G.

Assumption 1.5.1. We assume throughout that G is simple and
strongly connected, and that each out-degree is finite.

We recall that a graph is strongly connected if for every two nodes
i, j there exists a directed path from i to j. Finite out-degrees mean
that an agent observes the actions of a finite number of other agents.
We do allow infinite in-degrees; this corresponds to agents whose
actions are observed by infinitely many other agents. In the different
models that we consider we impose various other constraints on the
social network.

1.5.3. Time periods and actions. We consider the discrete time
periods t = 0, 1, 2, . . ., where in each period each agent i ∈ V has to
choose an action Ai

t ∈ {0, 1}. This action is a function of agent i’s
private signal, as well as the actions of its neighbors in previous time
periods, and so can be thought of as a function from Ω× {0, 1}|∂i|·t to
{0, 1}. The exact functional dependence varies among the models.

1.5.4. Extensions, generalizations, variations and special
cases. The framework presented above admits some natural exten-
sions, generalizations and variations. Conversely, some special cases
deserve particular attention. Indeed, some of the results we describe
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apply more generally, while others do not apply more generally, or ap-
ply only to special cases. We discuss these matters when describing
each model.

• The state of the world can take values from sets larger
than {0, 1}, including larger finite sets, countably infinite sets
or continuums.

• The agents’ private signals may not be i.i.d. conditioned
on S: they may be independent but not identical, they may
be identical but not independent, or they may have a general
joint distribution.

An interesting special case is when the space of private
signals is equal to the space of the states of the world. In this
case one can think of the private signals as each agent’s initial
guess of S.

• A number of models consider only undirected social net-
works, that is, symmetric social networks in which (i, j) ∈
E ⇔ (j, i) ∈ E.

• More general network model include weighted directed models
where different directed edges have different weights.

• Time can be continuous. In this case we assume that each
agent is equipped with an i.i.d. Poisson clock according to
which it “wakes up” and acts. In the finite case this is equiv-
alent to having a single, uniformly chosen random agent act
in each discrete time period. It is also possible to define more
general continuous time processes.

• Actions can take more values than {0, 1}. In particular we
shall consider the case that actions take values in [0, 1].

In order to model randomized behavior of the agents, we
shall also consider actions that are not measurable in the pri-
vate signal, but depend also on some additional randomness.
This will require the appropriate extension of the measure P
to a larger probability space.

1.6. Questions

The main phenomena that we shall study are convergence, agree-
ment, unanimity, learning and more.

• Convergence. We say that agent i converges when limt A
i
t ex-

ists. We say that the entire process converges when all agents
converge.

The question of convergence will arise in all the models we
study, and its answer in the positive will often be a requirement
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for subsequent treatment. When we do have convergence we
define

Ai
∞ = lim

t→∞
Ai

t.

• Agreement and unanimity. We say that agents i and j
agree when limt A

i
t = limtA

j
t . Unanimity is the event that i

and j agree for all pairs of agents i and j. In this case we can
define

A∞ = Ai
∞,

where the choice of i on the r.h.s. is immaterial.
• Learning. We say that agent i learns S when Ai

∞ = S, and
that learning occurs in a model when all agents learn. In
cases where we allow actions in [0, 1], we will say that i learns
whenever round (Ai

∞) = S, where round (·) denotes rounding
to the nearest integer, with round (1/2) = 1/2.

We will also explore the notion of asymptotic learning. This
is said to occur for a sequence of graph {Gn}∞n=1 if the agents
on Gn learn with probability approaching one as n tends to
infinity.

A recurring theme will be the relation between these questions and
the geometry or topology of the social network. We shall see that indeed
different networks may exhibit different behaviors in these regards, and
that in particular, and across very different settings, decentralized or
egalitarian networks tend to promote learning.
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CHAPTER 2

Heuristic Models

2.1. The DeGroot model

The first model we describe was pioneered by Morris DeGroot in
1974 [14]. DeGroot’s contribution was to take standard results in the
theory of Markov Processes (See, e.g., Doob [16]) and apply them in
the social setting. The basic idea for these models is that people re-
peatedly average their neighbors’ actions. This model has been studied
extensively in the economics literature. The question of learning in this
model has been studied by Golub and Jackson [23].

2.1.1. Definition. Following our general framework (Section 1.5),
we shall consider a state of the world S ∈ {0, 1} with conditionally i.i.d.
private signals. The distribution of private signals is what we shall
henceforth refer to as Bernoulli private signals: for some 1

2
> δ > 0,

µi(S) = 1
2
+ δ and µi(1 − S) = 1

2
− δ, for i = 0, 1. Obviously this is

equivalent to setting P [Wi = S|S] = 1
2
+ δ.

In the DeGroot model, we let the actions take values in [0, 1]. In
particular, we define the actions as follows:

Ai
0 = Wi

and for t > 0

Ai
t =

∑
j∈∂i

w(i, j)Aj
t−1,(2.1)

where we make the following three assumptions:

(1)
∑

j∈∂i w(i, j) = 1 for all i ∈ V .

(2) i ∈ ∂i for all i ∈ V .
(3) w(i, j) > 0 for all (i, j) ∈ E.

The last two assumptions are non-standard, and, in fact, not strictly
necessary. We make them to facilitate the presentation of the results
for this model.

We assume that the social network G is finite. We consider both the
general case of a directed strongly connected network, and the special
case of an undirected network.

7



8 2. HEURISTIC MODELS

2.1.2. Questions and answers. We shall ask, with regards to the
DeGroot model, the same three questions that appear in Section 1.6.

(1) Convergence. Is it the case that agents’ actions converge?
That is, does, for each agent i, the limit limt A

i
t exist almost

surely? We shall show that this is indeed the case.
(2) Agreement. Do all agents eventually reach agreement? That

is, does Ai
∞ = Aj

∞ for all (i, j) ∈ V ? Again, we answer this
question in the positive.

(3) Learning. Do all agents learn? In the case of continuous
actions we say that agent i has learned S if round (Ai

∞) = S.
Since we have agreement in this model, it follows that either all
agents learn or all do not learn. We will show that the answer
to this question depends on the topology of the social network,
and that, in particular, a certain form of egalitarianism is a
sufficient condition for learning with high probability.

2.1.3. Results. The key to the analysis of the DeGroot model is
the realization that (2.1) describes a transformation from the actions at
time t−1 to the actions at time t that is the Markov operator Pw of the
a random walk on the graph G. However, while usually the analysis of
random walks deals with action of Pw on distributions from the right,
here we act on functions from the left [17]. While this is an important
difference, it is still easy to derive properties of the DeGroot process
from the theory of Markov chains (see, e.g., Doob [16]).

Note first, that assumptions (2) and (3) on (2.1) make this Markov
chain irreducible and a-periodic. Since, for a node j

Aj
t = E

[
WXj

t

]
,

where Xj
t is the Markov chain started at j and run for t steps, if follows

that Aj
∞ := limt A

j
t is nothing but the expected value of the private

signals, according to the stationary distribution of the chain. We thus
obtain

Theorem 2.1.1 (Convergence and agreement in the DeGroot model).
For each j ∈ V ,

A∞ := lim
t
Aj

t =
∑
i∈V

αiWi,

where α = (α1, . . . , αn) is the stationary distribution of the Markov
chain described by Pw.

Recall that α is the left eigenvector of Pw corresponding to eigen-
value 1, normalized in `1. In the internet age, the vector α is also
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known as the PageRank vector [38]. It is the asymptotic probability of
finding a random walker at a given node after infinitely many steps of
the random walk. Note that α is not random; it is fixed and depends
only on the weights w. Note also that Theorem 2.1.1 holds for any real
valued starting actions, and not just ones picked from the distribution
described above. To gain some insight into the result, let us consider
the case of undirected graphs and simple (lazy) random walks. For
these, it can be shown that

αi =
|∂i|∑
j |∂j|

.

Recall that P [Ai
0 = S] = 1

2
+ δ. We observe the following.

Proposition 2.1.2 (Learning in the DeGroot model). For a set of
weights w, let pw(δ) = P [round (A∞) = S]. Then:

• pw is a monotone function of δ with pw(0) = 1/2 and pw(1/2) =
1.

• For a fixed 0 < δ < 1/2, among all w’s on graphs of size n,
pw(δ) is maximized when the stationary distribution of G is
uniform.

Proof. • The first part follows by coupling. Note that we
can couple the processes with δ1 < δ2 such that the value is S
is the same and moreover, whenever Wi = S in the δ1 process
we also have W1 = S in the δ2 process. Now, since the vector
α is independent of δ and A∞ =

∑
i αiWi, the coupling above

results in |A∞ − S| being smaller in the δ2 process than it is
in the δ1 process.

• The second part follows from the Neyman-Peason lemma in
statistics. This lemma states that among all possible estima-
tors, the one that maximizes the probability that S is recon-
structed correctly is given by

Ŝ = round

(
1

n

∑
i

Wi

)
�

We note that an upper bound on pw(δ) can be obtained using Ho-
effding’s inequality [24]. We leave this as an exercise to the reader.

Finally, the following proposition is again a consequence of well
known results on Markov chains. See the books by Saloff-Coste [41] or
Levin, Peres and Wilmer [27] for basic definitions.
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Proposition 2.1.3 (Rate of Convergence in the Degroot Model).
Suppose that at time t, the total variation distance between the chain
started at i and run for t steps and the stationary distribution is at
most ε. Then a.s.:

max
i

|Ai
t − A∞| ≤ 2εδ.

Proof. Note that

Ai
i − A∞ = E

[
WXi

t
−WX∞

]
.

Since we can couple the distributions of Xt and X∞ so that they dis-
agree with probability at most ε and the maximal difference between
any two private signals is at most δ, the proof follows.

�

2.1.4. Degroot with cheaters and bribes. A cheater is an
agent who plays a fixed action.

• Exercise. Consider the DeGroot model with a single cheater
who picks some fixed action. What does the process converge
to?

• Exercise. Consider the DeGroot model with k cheaters, each
with some (perhaps different) fixed action. What does the
model converge to?

• Research problem. Consider the following zero sum game.1

A and B are two companies. Each company’s strategy is a
choice of k cheaters (cheaters chosen by both play honestly),
for whom the company can choose a fixed value in [0, 1]. The
utility of company A is the sum of the players’ limit actions,
and the utility of company B is minus the utility of A. What
are the equilibria of this game?

2.1.5. The case of infinite graphs. Consider the DeGroot model
on an infinite graph, with a simple random walk.

• Easy exercise. Give an example of specific private signals
for which the limit A∞ doesn’t exist.

• Easy exercise. Prove that A∞ exists and is equal to S on
non-amenable graphs a.s. A graph is non-amenable if the
Markov operator Pw : `

2(V ) → `2(V ) has norm strictly less
than 1.

• Harder exercise. Prove that A∞ exists and is equal to S on
general infinite graphs.

1We do not formally define games here. A good introduction is Osborne and
Rubinstein’s textbook [36].
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2.2. The voter model

This model was described by P. Clifford and A. Sudbury [11] in the
context of a spatial conflict where animals fight over territory (1973)
and further analyzed by R.A. Holley and T.M. Liggett [25].

2.2.1. Definition. As in the DeGroot model above, we shall con-
sider a state of the world S ∈ {0, 1} with conditionally i.i.d. Bernoulli
private signals, so that P [Wi = S] = 1

2
+ δ.

We consider binary actions and define them in a way that resembles
our definition of the DeGroot model. We let:

Ai
0 = Wi

and for t > 0, all i and all j ∈ ∂i,

P
[
Ai

t = Aj
t−1

]
= w(i, j),(2.2)

so that in each round each agent chooses a neighboring agent to emu-
late. We make the following assumptions:

(1) All choices are independent.
(2)

∑
j∈∂i w(i, j) = 1 for all i ∈ V .

(3) i ∈ ∂i for all i ∈ V .
(4) w(i, j) > 0 for all (i, j) ∈ E.

As in the DeGroot model, the last two assumptions are non-standard,
and are made to facilitate the presentation of the results for this model.

We assume that the social network G is finite. We consider both the
general case of a directed strongly connected network, and the special
case of an undirected network.

2.2.2. Questions and answers. We shall ask, with regards to
the voter model, the same three questions that appear in Section 1.6.

(1) Convergence. Does, for each agent i, the limit limt A
i
t exist

almost surely? We shall show that this is indeed the case.
(2) Agreement. Does Ai

∞ = Aj
∞ for all (i, j) ∈ V ? Again, we

answer this question in the positive.
(3) Learning. In the case of discrete actions we say that agent

i has learned S if Ai
∞ = S. Since we have agreement in this

model, it follows that either all agents learn or all do not learn.
Unlike other models we have discussed, we will show that the
answer here is no. Even for large egalitarian networks, learning
doesn’t necessarily holds. We will later discuss a variant of the
voter model where learning holds.
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2.2.3. Results. We first note that

Proposition 2.2.1. In the voter model with assumptions (2.2) all
agents converge to the same action.

Proof. The voter model is a Markov chain. Clearly the states
where Ai

t = 0 for all i and the state where Ai
t = 1 for all i are absorbing

states of the chain. Moreover, it is easy to see that for any other state,
there is a sequence of moves of the chain, each occurring with positive
probability, that lead to the all 0 / all 1 state. From this it follows that
the chain will always converge to either the all 0 or all 1 state. �

We next wish to ask what is the probability that the agents learned
S? For the voter model this chance is never very high as the following
proposition shows:

Theorem 2.2.2 ((Non) Learning in the Voter model). Let A∞ de-
note the limit action for all the agents in the voter model. Then:

(2.3) P [A∞ = 1|W ] =
∑
i∈V

αiWi,

and

(2.4) P [A∞ = S|W ] =
∑
i∈V

αi1(Wi = S).

where α = (α1, . . . , αn) is the stationary distribution of the Markov
chain described by Pw. Moreover,

(2.5) P [A∞ = S] =
1

2
+ δ.

Proof. Note that (2.4) follows immediately from (2.3) and that
(2.5) follows from (2.4) by taking expectation over W . To prove (2.3)
we build upon a connection to the DeGroot model. Let Di

t denote the
action of agent i in the DeGroot model at time t. We are assuming
that the DeGroot model is defined using the same w(i, j) and that the
private signals are identical for the voter and DeGroot model. Under
these assumption it is easy to verify by induction on i and t that

P
[
Ai

t = 1
]
= Di

t.

Thus

P
[
Ai

∞ = 1
]
= Di

∞ =
∑
i∈V

αiWi,

as needed. �
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In the next section we will discuss a variant of the voter model that
does lead to learning.

We next briefly discuss the question of the convergence rate of the
voter model. Here again the connection to the Markov chain of the
DeGroot model is paramount (see, e.g., Holley and Liggett [25]). We
will not discuss this beautiful theory in detail. Instead, we will just
discuss the case of undirected graphs where all the weights are 1.

Exercise. Consider the voter model on an undirected graph with
n vertices. This is equivalent to letting w(i, j) = 1/di for all i, where
di = |∂i|.

• Show that Xt =
∑

diA
i
t is a martingale.

• Let T be the stopping time where Ai
t = 0 for all i or Ai

t = 1
for all i. Show that E [XT ] = E [X0] and use this to deduce
that

P [A∞ = 1|W ] =

∑
i∈V diWi∑
i∈V di

• Let d = maxi di. Show that

E
[
(Xt −Xt−1)

2|t < T
]
≥ 1/(2d).

Use this to conclude that

E [T ] /(2d) ≤ E
[
(XT −X0)

2
]
≤ n2,

so

E [T ] ≤ 2dn2.

2.2.4. A variant of the voter model. As we just saw, the voter
model does not lead to learning even on large egalitarian networks. It
is natural to ask if there are variants of the model that do. We will now
describe such a variant (see e.g. [5, 32]). For simplicity we consider an
undirected graphG = (V,E) and the following asynchronous dynamics.

• At time t = 0, let A0
i = (Wi, 1).

• At each time t ≥ 1 choose an edge e = (i, j) of the graph at
random and continue as follows:

• For all k /∈ {i, j}, let At
k = At−1

k .
• Denote (ai, wi) = At−1

i and (aj, wj) = At−1
j .

• If ai 6= aj and wi = wj = 1, let a′i = ai, a
′
j = aj and w′

i = w′
j =

0.
• If ai 6= aj and wi = 1 > wj = 0, let a′i = a′j = ai and w′

i = wi

and w′
j = wj.

• Similarly, if ai 6= aj and wj = 1 > wi = 0, let a′i = a′j = aj and
w′

i = wi and w′
j = wj.
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• if ai 6= aj and wj = wi = 0, let a′i = a′j = 0(1) with probability
1/2 each. Let w′

i = w′
j = 0.

• Otherwise, if ai = aj, let a
′
i = ai, a

′
j = aj, wi = w′

i, wj = w′
j.

• With probability 1/2 let At
i := (a′i, w

′
i) and At

j := (a′j, w
′
j).

With probability 1/2 let At
i := (a′j, w

′
j) and At

j := (a′i, w
′
i)

Here is a useful way to think about this dynamics. The n players
all begin with opinions given by Wi. Moreover these opinions are all
strong (this is indicated by the second coordinate of the action being 1).
At each round a random edge is chosen and the two agents sharing the
edge declare their opinions regarding S. If their opinions are identical,
then nothing changes except that with probability 1/2 the agents swap
their location on the edge. If the opinions regarding S differ and one
agent is strong (second coordinate is 1) while the second one is weak
(second coordinate is 0) then the weak agent is convinced by the strong
agent. If the two agents are strong, then they keep their opinion but
become weak. If the two of them are weak, then they both choose the
same opinion at random. At the end of the exchange, the agents again
swap their positions with probability 1/2. We leave the following as an
exercise:

Proposition 2.2.3. Let At
i = (X t

i , Y
t
i ). Then a.s.

limX t
i = X,

where

• X = 1 if
∑

i Wi > n/2,
• X = 0 if

∑
i Wi < n/2 and

• P [X = 1] = 1/2 if
∑

i Wi = n/2.

Thus this variant of the voter model yields optimal learning.

2.3. Deterministic iterated dynamics

A natural deterministic model of discrete opinion exchange dynam-
ics is majority dynamics, in which each agent adopts, at each time
period, the opinion of the majority of its neighbors. This is a model
that has been studied since the 1940’s in such diverse fields as bio-
physics [28], psychology [10] and combinatorics [22].

2.3.1. Definition. In this section, let Ai
0 take values in {−1,+1},

and let

Ai
t+1 = sgn

∑
j∈∂i

Aj
t .
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we assume that |∂i| is odd, so that there are never cases of indifference
and Ai

t ∈ {−1,+1} for all t and i. We assume also that the graph is
undirected.

A classical combinatorial result (that has been discovered indepen-
dently repeatedly; see discussion and generalization in [22]) is the fol-
lowing.

Theorem 2.3.1. Let G = (V,E) be a finite undirected graph. Then

Ai
t+1 = Ai

t−1

for all i, for all t ≥ |E|, and for all initial opinion sets {Aj
0}j∈V .

That is, each agent (and therefore the entire dynamical system)
eventually enters a cycle of period at most two. We prove this below.

A similar result applies to some infinite graphs, as discovered by
Moran [29] and Ginosar and Holzman [21]; see also [45, 6] . Given an
agent i, let nr(G, i) be the number of agents at distance exactly r from
i in G. Let g(G) denote the asymptotic growth rate of G given by

g(G) = lim sup
r

nr(G, i)1/n.

This can be shown to indeed be independent of i. Then

Theorem 2.3.2 (Ginosar and Holzman, Moran). If G has degree
at most d and g(G) < d+1

d−1
then for each initial opinion set {Aj

0}j∈V
and for each i ∈ V there exists a time Ti such that

Ai
t+1 = Ai

t−1

for all t ≥ Ti.

That is, each agent (but not the entire dynamical system) eventually
enters a cycle of period at most two. We will not give a proof of this
theorem.

In the case of graphs satisfying g(G) < (d + 1)/(d − 1), and in
particular in finite graphs, we shall denote

Ai
∞ = lim

t
Ai

2t.

This exists surely, by Theorem 2.3.2 above.
In this model we shall consider a state of the world S ∈ {−1,+1}

with conditionally i.i.d. Bernoulli private signals in {−1,+1}, so that
P [Wi = S] = 1

2
+ δ. As above, we set Ai

0 = Wi.
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2.3.2. Questions and answers. We ask the usual questions with
regards to this model.

(1) Convergence. While it is easy to show that agents’ opinions
do not necessarily converge in the usual sense, they do converge
to sequences of period at most two. Hence we will consider the
limit action Ai

∞ = limt A
i
2t as defined above to be the action

that agent i converges to.
(2) Agreement. This is easily not the case in this model that

Ai
∞ = Aj

∞ for all i, j ∈ V . However, in [30] it is shown that
agreement is reached, with high probability, for good enough
expander graph.2

(3) Learning. Since we do not have agreement in this model, we
will consider a different notion of learning. This notion may
actually be better described as retention of information. We
define it below. Condorcet’s Jury Theorem [12], in an early
version of the law of large numbers, states that given n con-
ditionally i.i.d. private signals, one can estimate S correctly,
except with probability that tends to zero with n. The ques-
tion of retention of information asks whether this still holds
when we introduce correlations “naturally” by the process of
majority dynamics.

Let G be finite, undirected graphs. Let

Ŝ = argmaxs∈{−1,+1} P
[
S = s

∣∣A1
∞, . . . , A|V |

∞
]
.

This is the maximum a-posteriori (MAP) estimator of S, given
the limit actions. Let

ι(G, δ) = P
[
Ŝ 6= S

]
,

where G and δ appear implicitly in the right hand side. This
is the probability that the best possible estimator of S, given
the limit actions, is not equal to S.

Finally, let {Gn}n∈N be a sequence of finite, undirected
graphs. We say that we have retention of information on the
sequence {Gn} if ι(Gn, δ) →n 0 for all δ > 0. This definition
was first introduced, to the best of our knowledge, in Mossel,
Neeman and Tamuz [30].

Is information retained on all sequences of growing graphs?
The answer, as we show below, is no. However, we show that
information is retained on sequences of transitive graphs [30].

2We do not define expander graphs formally here; informally, they are graphs
that resemble random graphs.
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2.3.3. Convergence. To prove convergence to period at most two
for finite graphs, we define the Lyapunov functional

Lt =
∑

(i,j)∈E

(Ai
t+1 − Aj

t)
2.

We prove Theorem 2.3.1 by showing that Lt is monotone decreasing,
that Ai

t+1 = Ai
t−1 whenever Lt − Lt−1 = 0, and that Lt = Lt−1 for all

t > |E|. This proof appears (for a more general setting) in Goles and
Olivos [22]. For this we will require the following definitions:

J i
t =

(
Ai

t+1 − Ai
t−1

)∑
j∈∂i

Aj
t

and

Jt =
∑
i∈V

J i
t .

Claim 2.3.3. J i
t ≥ 0 and J i

t = 0 iff Ai
t+1 = Ai

t−1.

Proof. This follows immediately from the facts that

Ai
t+1 = sgn

∑
j∈∂i

Aj
t ,

and that
∑

j∈∂i A
j
t is never zero. �

It follows that

Corollary 2.3.4. Jt ≥ 0 and Jt = 0 iff Ai
t+1 = Ai

t−1 for all i ∈ V .

We next show that Lt is monotone decreasing.

Proposition 2.3.5. Lt − Lt−1 = −Jt.

Proof. By definition,

Lt − Lt−1 =
∑

(i,j)∈E

(Ai
t+1 − Aj

t)
2 −

∑
(i,j)∈E

(Ai
t − Aj

t−1)
2.

Opening the parentheses and canceling identical terms yields

Lt − Lt−1 = −2
∑

(i,j)∈E

Ai
t+1A

j
t + 2

∑
(i,j)∈E

Ai
tA

j
t−1.

Since the graph is undirected we can change variable on the right sum
and arrive at

Lt − Lt−1 = −2
∑

(i,j)∈E

Ai
t+1A

j
t − Aj

tA
i
t−1

= −2
∑

(i,j)∈E

(
Ai

t+1 − Ai
t−1

)
Aj

t .
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Finally, applying the definitions of J i
t and Jt yields

Lt − Lt−1 = −
∑
i∈V

J i
t = −Jt.

�

Proof of Theorem 2.3.1. Since L0 ≤ |E|, Lt ≤ Lt−1 and Lt

is integer, it follows that Lt 6= Lt−1 at most |E| times. Hence, by
Proposition 2.3.5, Jt > 0 at most |E| times. But if Jt = 0, then the
state of the system at time t + 1 is the same as it was at time t − 1,
and so it has entered a cycle of length at most two. Hence Jt = 0 for
all t > |E|, and the claim follows. �

2.3.4. Retention of information. In this section we prove that

(1) There exists a sequence of finite, undirected graphs {Gn}n∈N
of size tending to infinity such that ι(G, δ) does not tend to
zero for any 0 < δ < 1

2
.

(2) Let {Gn}n∈N be a sequence of finite, undirected, connected
transitive graphs of size tending to infinity. Then ι(Gn, δ) →n

0, and, furthermore, if we let Gn have n vertices, then

ι(Gn, δ) ≤ Cn− Cδ
log(1/δ) .

for some universal constant C > 0.

A transitive graph is a graph for which, for every two vertices i and
j there exists a graph homomorphism σ such that σ(i) = j. A graph
homomorphism h is a permutation on the vertices such that (i, j) ∈
E iff (σ(i), σ(j)) ∈ E. Equivalently, the group Aut(G) ≤ S|V | acts
transitively on V .

Berger [8] gives a sequence of graphs {Hn}n∈N with size tending to
infinity, and with the following property. In each Hn = (V,E) there
is a subset of vertices W of size 18 such that if Ai

t = −1 for some t
and all i ∈ W then Aj

∞ = −1 for all j ∈ V . That is, if all the vertices
in W share the same opinion, then eventually all agents acquire that
opinion.

Proposition 2.3.6. ι(Hn, δ) ≥ (1− δ)18.

Proof. With probability (1 − δ)18 we have that Ai
0 = −S for all

i ∈ W . Hence Aj
∞ = −S for all j ∈ V , with probability at least

(1− δ)18. Since the MAP estimator Ŝ can be shown to be a symmetric

and monotone function of Aj
∞, it follows that in this case Ŝ = −S, and

so

ι(Hn, δ) = P
[
Ŝ 6= S

]
≥ (1− δ)18.
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�

We next turn to prove the following result

Theorem 2.3.7. Let G a finite, undirected, connected transitive
graph with n vertices, n odd. then

ι(G, δ) ≤ Cn− Cδ
log(1/δ) .

for some universal constant C > 0.

Let Ŝ = sgn
∑

i∈V Ai
∞ be the result of a majority vote on the limit

actions. Since n is odd then Ŝ takes values in {−1,+1}. Note that

Ŝ is measurable in the initial private signals Wi. Hence there exists a
function f : {−1,+1}n → {−1,+1} such that

Ŝ = f(W1, . . . ,Wn).

Claim 2.3.8. f satisfies the following conditions.

(1) Symmetry. For all x = (x1, . . . , xn) ∈ {−1,+1}n it holds
that f(−x1, . . . ,−xn) = −f(x1, . . . , xn).

(2) Monotonicity. f(x1, . . . , xn) = 1 implies that f(x1, . . . , xi−1, 1, xi+1, . . . , xn) =
1 for all i ∈ [n].

(3) Anonymity. There exists a subgroup G ≤ Sn that acts tran-
sitively on [n] such that f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn) for
all x ∈ {−1,+1}n and σ ∈ G.

This claim is straightforward to verify, with anonymity a conse-
quence of the fact that the graph is transitive.

2.3.4.1. Influences, Russo’s formula, the KKL theorem and Tala-
grand’s theorem. To prove Theorem 2.3.7 we use Russo’s formula, a
classical result in probability that we prove below.

Let X1, . . . , Xn be random variables taking values in {−1,+1}. For
−1

2
< δ < 1

2
, let Pδ be the distribution such that Pδ [Xi = +1] =

1
2
+ δ independently. Let g : {−1,+1}n → {−1,+1} be a monotone

function (as defined above in Claim 2.3.8). Let Y = g(X), where
X = (X1, . . . , Xn).

Denote by τi : {−1,+1}n → {−1,+1}n the function given by
τi(x1, . . . , xn) = (x1, . . . , xi−1,−xi, xi+1, . . . , xn). We define the influ-
ence Iδi of i ∈ [n] on Y as the probability that i is pivotal:

Iδi = Pδ [g(τi(X)) 6= g(X)] .

That is Iδi is the probability that the value of Y = g(X) changes, if we
change Xi.
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Theorem 2.3.9 (Russo’s formula).

dPδ [Y = +1]

dδ
=
∑
i

Iδi ,

Proof. Let Pδ1,...,δn be the distribution on X such that

Pδ1,...,δn [Xi = +1] = δi.

We prove the claim by showing that

∂Pδ1,...,δn [Y = +1]

∂δi
= Pδ1,...,δn [g(τi(X)) 6= g(X)] ,

and noting that Pδ,...,δ = Pδ, and that for general differentiable h :
Rn → R it holds that

∂h(y, . . . , y)

∂y
=
∑
i

∂h(x1, . . . , xn)

∂xi

(y).

Indeed, if we denote E = Eδ1,...,δn and P = Pδ1,...,δn , then

∂

∂δi
P [Y = +1] =

∂

∂δi
1
2
E [g(X)] .

Given x = (x1, . . . , xn) ∈ Rn, denote x−i = (x1, . . . , xi−1, xi+1, . . . , xn).
Then

E [g(X)] =
∑
x

P [X−i = x−i, Xi = xi] g(x)

=
∑
x

P [X−i = x−i]P [Xi = xi] g(x),

where the second equality follows from the independence of the Xi’s.
Hence

∂

∂δi
Pδ1,...,δn [Y = +1] =

∂

∂δi
1
2

∑
x

P [X−i = x−i]P [Xi = xi] g(x)

= 1
2

∑
x

P [X−i = x−i]xig(x),

where the second equality follows from the fact that P [X = +1] = δi
and P [X = −1] = 1 − δi. Now,

∑
xi
xig(x) is equal to zero when

g(τi(x)) = g(x), and to two otherwise, since g is monotone. Hence

∂

∂δi
Pδ1,...,δn [Y = +1] =

∑
x

P [X−i = x−i]1(g(τi(x)) 6= g(x))

= P [g(τi(X)) 6= g(X)] .

�
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Kahn, Kalai and Linial [26] prove a deep result on Boolean func-
tions on the hypercube (i.e., functions from {−1,+1}n to {−1,+1}),
which was later generalized by Talagrand [44]. Their theorem states
that there must exist an i with influence at least O(log n/n).

Theorem 2.3.10 (Talagrand). Let εδ = maxi I
δ
i and qδ = Pδ [Y = 1].

Then ∑
i

Iδi ≥ K log (1/εδ) qδ(1− qδ).

for some universal constant K.

Using this result, the proof of Theorem 2.3.7 is straightforward, and
we leave it as an exercise to the reader.





CHAPTER 3

Bayesian Models

In this chapter we study Bayesian agents. We call an agent Bayesian
when its actions maximize the expectation of some utility function.
This is a model which comes from Economics, where, in fact, its use
is the default paradigm. We will focus on the case in which an agent’s
utility depends only on the state of the world S and on its actions, and
is the same for all agents and all time periods.

3.0.1. Toy model: continuous actions. Before defining general
Bayesian models, we consider the following simple model on an undi-
rected connected graph. Let S ∈ {0, 1} be a binary state of the world,
and let the private signals be i.i.d. conditioned on S.

We denote by H i
t the information available to agent i at time t.

This includes its private signal, and the actions of its neighbors in the
previous time periods:

H i
t =

{
Wi, A

j
t′ : j ∈ ∂i, t′ < t

}
.(3.1)

The actions are given by

Ai
t = P

[
S = 1

∣∣H i
t

]
.(3.2)

That is, each agent’s action is its belief, or the probability that it assigns
to the event S = 1, given what it knows.

For this model we prove the following results:

• Convergence. The actions of each agent converge almost
surely to some Ai

∞. This is a direct consequence of the ob-
servation that {σ(H i

t)}t∈N is a filtration, and so {Ai
t}t∈N is a

bounded martingale. Note that this does not use the indepen-
dence of the signals.

• Agreement. The limit actions Ai
∞ are almost surely the same

for all i ∈ V . This follows from the fact that if i and j are
connected then Ai

∞ +Aj
∞ ∈ H i

∞ ∩Hj
∞ and if Ai

∞ and Aj
∞ are

not a.s. equal then:

E
[(

1
2
(Ai

∞ + Aj
∞)− S

)2]
< max

(
E
[
(Ai

∞ − S)2
]
,E
[
(Aj

∞ − S)2
] )

.

23
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Note again that this argument does not use the independence
of the signals. We will show this in further generality in Sec-
tion 3.2 below. This is a consequence of a more general agree-
ment theorem that applies to all Bayesian models, which we
prove in Section 3.1.

• Learning. When |V | = n, we show in Section 3.4 that Ai
∞ =

P [S = 1|W1, . . . ,Wn]. This is the strongest possible learning
result; the agents’ actions are the same as they would be if
each agent knew all the others’ private signals. In particular,
it follows that P [round (Ai

∞) 6= S] is exponentially small in n.
This result crucially relies on the independence of the signals
as the following example shows.

Example 3.0.1. Consider two agents 1, 2 with Wi = 0 or 1 with
probability 1/2 each and independently, and S = W1+W2 mod 2. Note
that here At

i = 1/2 for i = 1, 2 and all t, while it is trivial to recover S
from W1,W2.

3.0.2. Definitions and some observations. Following our gen-
eral framework (see Section 1.5) we shall (mostly) consider a state of the
world S ∈ {0, 1} chosen from the uniform distribution, with condition-
ally i.i.d. private signals. We will consider both discrete and continuous
actions, and each shall correspond to a different utility function. A util-
ity function will simply be a continuous map u : {0, 1}× [0, 1] → [0, 1].
The quantity u(S, a) represents what the agent gains when choosing
action a when the state is S. In a sense that we will soon define for-
mally, agents will be utility maximizers: they will choose their actions
so as to maximize their utilities.

More precisely, we shall denote by U i
t = u(S,Ai

t) agent i’s utility at
time t, and study myopic agents, or agents who strive to maximize, at
each period t, the expectation of U i

t .
As in the toy model above, we denote by H i

t the information avail-
able to agent i at time t, including its private signal, and the actions
of its neighbors in the previous time periods:

H i
t =

{
Wi, A

j
t′ : j ∈ ∂i, t′ < t

}
.(3.3)

Given a utility function U i
t = u(S,Ai

t), a Bayesian agent will choose

Ai
t = argmaxs E

[
u(S, s)

∣∣H i
t

]
.(3.4)

Equivalently, one can define Ai
t as a random variable which, out of all

σ(H i
t)-measurable random variables, maximizes the expected utility:

Ai
t = argmaxA∈σ(Hi

t)
E [u(S,A)] .(3.5)
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We assume that in cases of indifference (i.e., two actions that maximize
the expected utility) the agents chooses one according to some known
deterministic rule.

We consider two utility functions; a discrete one that results in dis-
crete actions, and a continuous one that results in continuous actions.
The first utility function is

U i
t = 1(Ai

t = S).(3.6)

Although this function is not continuous as a function from [0, 1] to
[0, 1], we will, in this case, consider the set of allowed actions to be
{0, 1}, and so u : {0, 1} × {0, 1} → R will be continuous again.

To maximize the expectation of U i
t conditioned on H i

t , a myopic
agent will choose the action

Ai
t = argmaxs∈{0,1} P

[
S = s

∣∣H i
t

]
,(3.7)

which will take values in {0, 1}.
We will also consider the following utility function, which corre-

sponds to continuous actions:

U i
t = 1−

(
Ai

t − S
)2

.(3.8)

To maximize the expectation of this function, an agent will choose the
action

Ai
t = P

[
S = 1

∣∣H i
t

]
.(3.9)

This action will take values in [0, 1].
An important concept in the context of Bayesian agents is that of

belief. We define agent i’s belief at time t to be

Bi
t = P

[
S = 1

∣∣H i
t

]
.(3.10)

This is the probability that S = 1, conditioned on all the information
available to i at time t. It is easy to check that, in the discrete action
case, the action is the rounding of the belief. In the continuous action
case the action equals the belief.

An important distinction is between bounded and unbounded private
signals [43]. We say that the private signal Wi is bounded when there
exists an ε > 0 such the private belief Bi

0 = P [S = 1|Wi] is supported
on [ε, 1 − ε]. We will say that it is unbounded when the private belief
Bi

0 = P [S = 1|Wi] can be arbitrarily close to both 1 and 0; formally,
when the convex closure of the support of Bi

0 is equal to [0, 1].
Unbounded private signals can be thought of as being “unboundedly

strong”, and therefore could be expected to promote learning. This is
indeed the case, as we show below.
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The following claim follows directly from the fact that the sequence
of sigma-algebras σ(H i

t) is a filtration.

Claim 3.0.2. The sequence of beliefs of agent i, {Bi
t}t∈N, is a

bounded martingale.

It follows that a limiting belief almost surely exists, and we can
define

Bi
∞ = lim

t→∞
Bi

t.(3.11)

Furthermore, if we let H i
∞ = ∪tH

i
t , then

Bi
∞ = P

[
S = 1

∣∣H i
∞
]
.(3.12)

We would like to also define the limiting action of agent i. However,
it might be the case that the actions of an agent do not converge. We
therefore define Ai

t to be an action set, given by the set of accumulation
points of the sequence Ai

t. In the case that Ai
∞ is a singleton {x}, we

denote Ai
∞ = x, in a slight abuse of notation. Note that in the case

that actions take values in {0, 1} (as we will consider below), Ai
∞ is

either equal to 1, to 0, or to {0, 1}.
The following claim is straightforward.

Claim 3.0.3. Fix a continuous utility function u. Then

lim
t
E
[
u(S,Ai

t)
∣∣H i

t

]
= E

[
u(S, a)

∣∣H i
∞
]
≥ E

[
u(S, b)

∣∣H i
∞
]

for all a ∈ Ai
∞ and all b.

That is, any action in Ai
∞ is optimal (that is, maximizes the ex-

pected utility), given what the agent knows at the limit t → ∞. It
follows that

E
[
u(S, a)

∣∣H i
∞
]
= E

[
u(S, b)

∣∣H i
∞
]

for all a, b ∈ Ai
∞. It also follows that in the case of actions in {0, 1},

Ai
∞ = {0, 1} only if i is asymptotically indifferent, or expects the same

utility from both 0 and 1.
We will show that an oft-occurring phenomenon in the Bayesian

setting is agreement on limit actions, so that Ai
∞ is indeed a singleton,

and Ai
∞ = Aj

∞ for all i, j ∈ V . In this case we can define A∞ as the
common limit action.

3.1. Agreement

In this section we show that regardless of the utility function, and, in
fact, regardless of the private signal structure, Bayesian agents always
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reach agreement, except in cases of indifference. This theorem origi-
nated in the work of Aumann [2], with contributions by Geanakoplos
and others [20, 42]. It first appeared as below in Gale and Kariv [18].
Rosenberg, Solan and Vieille [39] correct an error in the proof and
extend this result to the even more general setting of strategic agents
(which we will not discuss), as is done in [35].

Theorem 3.1.1 (Gale and Kariv). Fix a utility function U i
t =

u(S,Ai
t), and consider (i, j) ∈ E. Then

E
[
u(S, ai)

∣∣H i
∞
]
= E

[
u(S, aj)

∣∣H i
∞
]

for any ai ∈ Ai
∞ and aj ∈ Aj

∞.

That is, any action in Aj
∞ is optimal, given what i knows, and so

has the same expected utility as any action in Ai
∞. Note that this

theorem applies even when private signals are not conditionally i.i.d.,
and when S is not necessarily binary.

Note that (3.5) is a particularly useful way to think of the agents’
actions, as the proof of the following claim shows.

Claim 3.1.2. For all (i, j) ∈ E it holds that

(1) E
[
U i
t+1

]
≥ E [U i

t ].

(2) E
[
U i
t+1

]
≥ E

[
U j
t

]
.

Proof. (1) Since σ(H i
t) is included in σ(H i

t+1), the maximum
in (3.5) is taken over a larger space for Ai

t+1 than it is for Ai
t,

and therefore a value at least as high is achieved.
(2) Since Aj

t is σ(H i
t+1)-measurable, it follows from (3.5) that

E
[
u(S,Ai

t+1)
]
≥ E

[
u(S,Aj

t)
]
.

�

Exercise. Prove the following corollary.

Corollary 3.1.3. For all i, j ∈ V ,

lim
t
E
[
U i
t

]
= lim

t
E
[
U i
j

]
Exercise. Prove Theorem 3.1.1 using Corollary 3.1.3 and Claim 3.0.3.

3.2. Continuous utility models

As mentioned above, in the case that the utility function is

U i
t = 1−

(
Ai

t − S
)2

,

it follows readily that

Ai
t = Bi

t = P
[
S = 1

∣∣H i
t

]
,
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and so, by Claim 3.0.2, the actions of each agent form a martingale,
and furthermore each converge to a singleton Ai

∞. Aumann’s celebrated
Agreement Theorem from the paper titled “Agreeing to Disagree” [2],
as followed-up by Geanakoplos and Polemarchakis in the paper titled
“We can’t disagree forever” [20], implies that all these limiting actions
are equal. This follows from Theorem 3.1.1.

Theorem 3.2.1. In the continuous utility model

Ai
∞ = P

[
S = 1

∣∣H i
∞
]

and furthermore

Ai
∞ = Aj

∞

for all i, j ∈ V .

Note again that this holds also for private signals that are not con-
ditionally i.i.d.

Proof. As was mentioned above, since the actions Ai
t are equal to

the beliefs Bi
t, they are a bounded martingale and therefore converge.

Hence Ai
∞ = Bi

∞ and, by (3.12),

Ai
∞ = P

[
S = 1

∣∣H i
∞
]
.

Assume (i, j) ∈ E. By Theorem 3.1.1 we have that

E
[
u(S,Ai

∞)
∣∣H i

∞
]
= E

[
u(S,Aj

∞)
∣∣H i

∞
]
.

It hence follows from Claim 3.0.3 that both Ai
∞ and Aj

∞ maximize
E [u(S, ·)|H i

∞]. But the unique maximizer is P [S = 1|H i
∞], and so

Ai
∞ = Aj

∞. For general i and j, the claim now follows from the fact
that the graph is connected. �

3.3. Bounds on number of rounds in finite probability spaces

In this section we consider the case of a finite probability space.
Let S be binary, and let the private signals W = (W1, . . . ,W|V |) be
chosen from an arbitrary (not necessarily conditionally independent)
distribution over a finite joint probability space of size M . Consider
general utility functions U i

t = u(S,Ai
t).

The following theorem is a strengthening of a theorem by Geanako-
plos [19], using ideas from [31].

Theorem 3.3.1 (Geanakoplos). Let d be the diameter of the graph
G. Then the actions of each agent converge after at most M · |V | time
periods:

Ai
t = Ai

t′
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for all i ∈ V and all t, t′ ≥ M · |V |. Furthermore, the number of time
periods t such that Ai

t+1 6= Ai
t is at most M .

The key observation is that each sigma-algebra σ(H i
t) is generated

by some subset of the set of random variables
{
1(W = m)

}
m∈{1,...,M}.

Proof. By (3.5), if σ(H i
t) = σ(H i

t′) then Ai
t = Ai

t′ . It remains
to show, then, that σ(H i

t) = σ(H i
t′) for all t, t′ ≥ M · |V |, and that

σ(H i
t) 6= σ(H i

t+1) at most M times.

Now, every sub-sigma-algebra of σ(W ) (such as σ(H i
t)) is simply a

partition of the finite space {1, . . . ,M}. Furthermore, for every i, the
sequence σ(H i

t) is a filtration, so that each σ(H i
t+1) is a refinement of

σ(H i
t). A simple combinatorial argument shows that any such sequence

has at most M unique partitions, and so σ(H i
t) 6= σ(H i

t+1) at most M
times.

Finally, note that if σ(H i
t) = σ(H i

t+1) for all i ∈ V at some time t,
then this is also the case for all later time periods. Hence, as long as
the process hasn’t ended, it must be that σ(H i

t) 6= σ(H i
t+1) for some

agent i. It follows that the process ends after at most M · |V | time
periods.

�

3.4. From agreement to learning

This section is adapted from Mossel, Sly and Tamuz [33].
In this section we prove two very general results that relate agree-

ment and learning in Bayesian models. As in our general framework,
we consider a binary state of the world S ∈ {0, 1} chosen from the
uniform distribution, with conditionally i.i.d. private signals. We do
not define actions, but only study what can be said when, at the end
of the process (whatever it may be) the agents reach agreement.

Formally, consider a finite set of agents of size n, or a countably
infinite set of agents, each with a private signal Wi. Let Fi be the
sigma-algebra that represents what is known by agent i. We require
thatWi is Fi measurable (i.e., each agent knows its own private signal),
and that each Fi is a sub-sigma-algebra of σ(W1,W2, . . .). Let agent
i’s belief be

Bi = P [S = 1|Fi] ,

and let agent i’s action be

Ai = argmaxs∈{0,1} P [S = s|Fi] .

We let Ai = {0, 1} when both maximize P [S = s|Fi].
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We say that agents agree on beliefs when there exists a random
variable B such that almost surely Bi = B for all agents i. Likewise,
we say that agents agree on actions when there exists a random variable
A such that almost surely Ai = A for all agents i. Such agreement arises
often as a result of repeated interaction of Bayesian agents.

We show below that agreement on beliefs is a sufficient condition
for learning, and in fact implies the strongest possible type of learning.
We also show that when private signals are unbounded beliefs then
agreement on actions is also a condition for learning.

3.4.1. Agreement on beliefs. The following theorem and its
proof is taken from [33]. This theorem also admits a proof as a corol-
lary of some well known results on rational expectation equilibria (see,
e.g., [15, 37]), but we will not delve into this topic.

Theorem 3.4.1. Let the private signals (W1, . . . ,Wn) be indepen-
dent conditioned on S, and let the agents agree on beliefs. Then

B = P [S = 1|W1, . . . ,Wn] .

That is, if the agents have exchanged enough information to agree
on beliefs, they have exchanged all the relevant information, in the
sense that they have the same belief that they would have had they
shared all the information.

Proof. Denote agent i’s private log-likelihood ratio by

Zi = log
dµi

1

dµi
0

(Wi).

Since P [S = 1] = P [S = 0] = 1/2 it follows that

Zi = log
P [S = 1|Wi]

P [S = 0|Wi]
.

Denote Z =
∑

i∈[n] Zi. Then, since the private signals are condi-
tionally independent, it follows by Bayes’ rule that

P [S = 1|W1, . . . ,Wn] = logit (Z) ,(3.13)

where logit(z) = ez/(ez + e−z).
Since

B = P [S = 1|B] = E [P [S = 1|B,W1, . . . ,Wn]|B]

then

B = E [logit(Z)|B] ,(3.14)
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since, given the private signals (W1, . . . ,Wn), further conditioning on
B (which is a function of the private signals) does not change the
probability of the event S = 1.

Our goal is to show that B = P [S = 1|W1, . . . ,Wn]. We will do this
by showing that conditioned on B, Z and logit(Z) are uncorrelated.
It will follow that conditioned on B, Z is constant, so that Z = Z(B)
and

B = P [S = 1|B] = P [S = 1|Z(B)] = P [S = 1|W1, . . . ,Wn] .

By the law of total expectation we have that

E [Zi · logit(Z)|B] = E [E [Zilogit(Z)|B,Zi]|B] .

Note that E [Zi · logit(Z)|B,Zi] = ZiE [logit(Z)|B,Zi] and so we can
write

E [Zi · logit(Z)|B] = E [ZiE [logit(Z)|B,Zi]|B] .

Since Zi is Fi measurable, and since, by (3.14), B = E [logit(Z)|Fi] =
E [logit(Z)|B], then B = E [logit(Z)|B,Zi] and so it follows that

E [Zi · logit(Z)|B] = E [ZiB|B] = B · E [Zi|B] = E [logit(Z)|B] · E [Zi|B] .
(3.15)

where the last equality is another substitution of (3.14). Summing this
equation (3.15) over i ∈ [n] we get that

E [Z · logit(Z)|B] = E [logit(Z)|B]E [Z|B] .(3.16)

Now, since logit(Z) is a monotone function of Z, by Chebyshev’s
sum inequality we have that

E [Z · logit(Z)|B] ≥ E [logit(Z)|B]E [Z|B](3.17)

with equality only if Z (or, equivalently logit(Z)) is constant. Hence
Z is constant conditioned on B and the proof is concluded.

�

3.4.2. Agreement on actions. In this section we consider the
case that the agents agree on actions, rather than beliefs. The bound-
edness of private beliefs plays an important role in the case of agree-
ment on actions. When private beliefs are bounded then agreement on
actions does not imply learning, as shown by the following example,
which is reminiscent of Bala and Goyal’s [3] royal family. However,
when private beliefs are unbounded then learning does occur with high
probability, as we show below.
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Example 3.4.2. Let there be n > 100 agents, and call the first hun-
dred “the Senate”. The private signals are bits that are independently
equal to S with probability 2/3. Let

AS = argmaxa P [S = a|W1, . . . ,W100] ,

and let Fi = σ(Wi, AS).

This example describes the case in which the information available
to each agent is the decision of the senate - which aggregates the sen-
ators’ private information optimally - and its own private signal. It is
easy to convince oneself that Ai = AS for all i ∈ [n], and so actions
are indeed agreed upon. However, the probability that AS 6= S - i.e.,
the Senate makes a mistake - is constant and does not depend on the
number of agents n. Hence the probability that the agents choose the
wrong action does not tend to zero as n tends to infinity. This cannot
be the case when private beliefs are unbounded, as Mossel, Sly and
Tamuz [33] show.

Theorem 3.4.3 (Mossel, Sly and Tamuz). Let the private sig-
nals (W1, . . . ,Wn) be i.i.d. conditioned on S, and have unbounded be-
liefs. Let the agents agree on actions. Then there exists a sequence
q(n) = q(n, µ0, µ1), depending only on the conditional private signal
distributions µ1 and µ0, such that q(n) → 1 as n → ∞, and

P [A = S] ≥ q(n).

In particular,

q(n) ≤ min
ε>0

max

{
2ε

1− ε
,

4

nP [Bi < ε|S = 0]

}
.

For the case of a countably infinite set of agent, we prove (using an
essentially identical technique) the following similar statement.

Theorem 3.4.4. Identify the set of agents with N, let the private
signals (W1,W2, . . .) be i.i.d. conditioned on S, and have unbounded
beliefs. Let all but a vanishing fraction of the agents agree on actions.
That is, let there exist a random variable A such that almost surely

lim sup
n

1

n
|{i ∈ N : Ai 6= A}| = 0.

Then P [A = S] = 1.

Recall that Bi
0 denoted the probability of S = 1 given agent i’s

private signal:

Bi
0 = P [S = 1|Wi] .
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The condition of unbounded beliefs can be equivalently formulated to
be that for any ε > 0 it holds that P [Bi

0 < ε] > 0 and P [Bi
0 > 1− ε] >

0.
We shall need two standard lemmas to prove this theorem.

Lemma 3.4.5. P [S = 0|Bi
0 < ε] > 1− ε.

Proof. Since Bi
0 is a function of Wi then

P
[
S = 1

∣∣Bi
0 = bi

]
= E

[
P [S = 1|Wi]

∣∣Bi
0(Wi) = bi

]
= E

[
Bi

0

∣∣Bi
0 = bi

]
= bi,

and so P [S = 1|Bi
0] = Bi

0. It follows that P [S = 0|Bi
0] = 1 − Bi

0, and
so P [S = 0|Bi

0 < ε] > 1− ε. �

Lemma 3.4.6 below is a version of Chebyshev’s inequality, quantify-
ing the idea that the expectation of a random variable Z, conditioned
on some event A, cannot be much lower than its unconditional expec-
tation when A has high probability.

Exercise. Prove the following lemma.

Lemma 3.4.6. Let Z be a real random variable with finite variance,
and let A be an event. Then

E [Z]−

√
Var [Z]

P [A]
≤ E [Z|A] ≤ E [Z] +

√
Var [Z]

P [A]

We are now ready to prove Theorem 3.4.4.

Proof of Theorem 3.4.4. Consider a set of agents N who agree
(except for a vanishing fraction) on the action. Assume by contradic-
tion that q = P [A 6= 0|S = 0] > 0.

Recall that Bi = P [S = 1|Fi]. Since P [S = 1|Bi
0] = Bi

0,

E
[
Bi

∣∣Bi
0

]
= E

[
P [S = 1|Fi]

∣∣Bi
0

]
= P

[
S = 1

∣∣Bi
0

]
= Bi

0.

Applying Markov’s inequality toBi we have that P
[
Bi ≥ 1

2

∣∣Bi
0 < ε

]
<

2ε, and in particular

P
[
Ai 6= 0, S = 0

∣∣Bi
0 < ε

]
= P

[
Bi ≥ 1

2
, S = 0

∣∣Bi
0 < ε

]
< 2ε

so

P
[
Ai 6= 0, S = 0, Bi

0 < ε
]
≤ 2εP

[
Bi

0 < ε
]

Denote

K(n) =
1

n

∑
i∈[n]

1(Bi
0 < ε) =

1

n

∑
i∈[n]

1(Bi
0 < ε,Ai = 0) +

1

n

∑
i∈[n]

1(Bi
0 < ε,Ai 6= 0)

(3.18)
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Let K1(n) denote the first sum and K2(n) denote the second sum.
From our assumption that a vanishing fraction of agents disagree it
follows that a.s.

lim supE [K1(n)|A 6= 0, S = 0]

≤ 1

q
lim supE [K1(n)|A 6= 0]

≤ 1

q
lim supE

 1
n

∑
i∈[n]

1(Ai = 0)

∣∣∣∣∣∣A 6= 0

 = 0.

It also follows that for all n

E [K2(n)|A 6= 0, S = 0] ≤ 1

q
E [K2(n), A 6= 0, S = 0] ≤ 2εP [Bi

0 < ε]

q
.

Thus

lim sup
n

E [K(n)|A 6= 0, S = 0] ≤ 2εP [Bi
0 < ε]

q
.

We hence bound E [K|A 6= 0, S = 0] from above. We will now
bound it from below to obtain a contradiction.

Applying lemma 3.4.6 to K and the event {A 6= 0} (under the
conditional measure S = 0) yields that

E [K(n)|A 6= 0, S = 0] ≥ E [K(n)|S = 0]−

√
Var [K(n)|S = 0]

q
.

Since the agents’ private signals (and hence their private beliefs) are in-
dependent conditioned on S = 0, K (conditioned on S) is the average of
n i.i.d. variables. Hence Var [K(n)|S = 0] = n−1Var [1(Bi

0 < ε)|S = 0]
and E [K(n)|S = 0] = P [Bi

0 < ε|S = 0]. Thus we have that

E [K(n)|A 6= 0, S = 0] ≥ P
[
Bi

0 < ε
∣∣S = 0

]
− n−1/2

√
Var [1(Bi

0 < ε)|S = 0]

q
.

(3.19)

and so

lim inf
n

E [K(n)|Ai 6= 0, S = 0] ≥ P
[
Bi

0 < ε
∣∣S = 0

]
Joining the lower bound with the upper bound we obtain that

P
[
Bi

0 < ε
∣∣S = 0

]
≤ 2εP [Bi

0 < ε]

q
,
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and applying Bayes rule we obtain

q <
ε

P [S = 0|Bi
0 < ε]

.

Since by Lemma 3.4.5 above we know that P [S = 0|Bi
0 < ε] > 1−ε,

then

q <
ε

1− ε
.

Since this holds for all ε, we have shown that q = 0, which is a contra-
diction. �

3.5. Sequential Models

In this section we consider a classical class of learning models called
sequential models. We retain a binary state of the world S and
conditionally i.i.d. private signals, but relax two assumption.

• We no longer assume that the graph G is strongly connected.
In fact, we consider the particular case that the set of agents
is countably infinite, identify it with N, and let (i, j) ∈ E iff
j < i. That is, the agents are ordered, and each agent observes
the actions of its predecessors.

• We assume that each agent acts once, after observing the ac-
tions of its predecessors. That is, agent i acts only once, at
time i.

In this section, we denote agent i’s (single) action by Ai. Hence agent
i’s information when taking its action, which we denote by Hi, is

Hi = {Wi, Aj : j < i}.
We likewise denote agent i’s belief at time i by Bi = P [S = 1|Hi]. We
assume discrete utilities, so that

Ai = argmaxs∈{0,1} P [S = s|Hi] ,

and let Ai = 1 when P [S = 1|Hi] = 1/2.
Since each agent acts only once, we explore a different notion of

learning in this section. The question we consider is the following:
when is it the case that limi→∞Ai = S with probability one? Since the
graph is fixed, the answer to this question depends only on the private
signal distributions µ0 and µ1.

This model (in a slightly different form) was introduced indepen-
dently by Bikhchandani, Hirshleifer and Welch [9], and Banerjee [4].
A significant later contribution is that of Smith and Sørensen [43].

An interesting phenomenon that arises in this model is that of an
information cascade. An information cascade is said to occur if, given
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an agent i’s predecessor’s actions, i’s action does not depend on its
private signal. This happens if the previous agents’ actions present
such compelling evidence towards the event that (say) S = 1, that any
realization of the private signal would not change this conclusion. Once
this occurs - that is, once one agent’s action does not depend on its
private signal - then this will also hold for all the agents who act later.

3.5.1. The external observer at infinity. An important tool in
the analysis of this model is the introduction of an external observer x
that observes all the agents’ actions but none of their private signals.
We denote by Hx

i = {Aj : j < i} the information available to x at
time i, and denote by

Bx
i = P [S = 1|Hx

i ]

and

Bx
∞ = lim

i
Bx

i = P [S = 1|Hx
∞]

the beliefs of x at times t and infinity respectively, where, as before,
Hx

∞ = ∪iH
x
i . The same martingale argument used above can also be

used here to show that the limit Bx
∞ indeed exists and satisfies the

equality above.
Exercise. Show that the likelihood ratio

Lx
i =

1−Bx
i

Bx
i

is also a martingale, conditioned on S = 1.
The martingale {Bx

i } converges almost surely to Bx
∞ in [0, 1], and

conditioned on S = 1, Bx
∞ has support ⊆ (0, 1]. The reason that Bx

∞ 6=
0 when conditioning on S = 1, is the fact that P [S = 1|Bx

∞] = Bx
∞,

and so P [S = 1|Bx
∞ = 0] = 0.

We also define actions for x, given by

Ax
i = argmaxs∈{0,1} P [S = s|Hx

i ] = round (Bx
i ) .

We again assume that in cases of indifference, the action 1 is chosen.

Claim 3.5.1. Ax
i+1 = Ai

That is, the external observer simply copies, at time t + 1, the
action of agent t. This follows immediately from the fact that Ai is
σ(Hi)-measurable, and so Hx

i+1 ⊆ Hi. It follows that limiAi = limiA
x
i ,

and so we have learning - in the sense we defined above for this section
by limi Ai = S - iff the external observer learns in the usual sense of
limi A

x
i = S.
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3.5.2. The agents’ calculation. We write out each agent’s cal-
culation of its belief Bi, from which follows its action Ai. This is more
easily done by calculating the likelihood ratio

Li =
1−Bi

Bi

.

By Bayes’ law, since P [S = 1] = P [S = 0] = 1
2
, and since Hi =

(Hx
i ,Wi)

Li =
P [S = 0|Hi]

P [S = 1|Hi]
=

P [Hi|S = 0]

P [Hi|S = 1]
=

P [Hx
i ,Wi|S = 0]

P [Hx
i ,Wi|S = 1]

.

Since the private signals are conditionally i.i.d., Wi is conditionally
independent of Hx

i , and so

Li =
P [Hx

i |S = 0]

P [Hx
i |S = 1]

· P [Wi|S = 0]

P [Wi|S = 1]
.

We denote by Pi the private likelihood ratio P [Wi|S = 0] /P [Wi|S = 1],
so that

Li = Lx
i · Pi.(3.20)

3.5.3. The Markov chain and the martingale. Another useful
observation is that {Bx

i }i∈N is not only a martingale, but also a Markov
chain. We denote this Markov chain on [0, 1] by M. To see this, note
that conditioned on S, the private likelihood ratio Pi is independent
of Bx

j , j < i, and so its distribution conditioned on Bx
i = P [S = 1|Hx

i ]
is the same as its distribution conditioned on (Bx

0 , . . . , B
x
i ), which are

σ(Hx
i )-measurable.

3.5.4. Information cascades, convergence and learning. An
information cascade is the event that, for some i, conditioned onHx

i , Ai

is independent of Wi. That is, an information cascade is the event that
the observer at infinity knows, at time i, which action agent i is going
to take, even though it only knows the actions of i’s predecessors and
does not know i’s private signal. Equivalently, an information cascade
occurs when Ai is σ(Hx

i )-measurable. It is easy to see that it follows
that Aj will also be σ(Hx

i )-measurable, for all j ≥ i.

Claim 3.5.2. An information cascade is the event that Bx
i is a fixed

point of M.

By “fixed point of M” we mean that a.s. Bx
i+1 = Bx

i .
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Proof of Claim 3.5.2. If Ai is σ(H
x
i ) measurable then σ(Hx

i ) =
σ(Hx

i , Ai) = σ(Hx
i+1). It follows that

Bx
i = P [S = 1|Hx

i ] = P
[
S = 1

∣∣Hx
i+1

]
= Bx

i+1.

Conversely, if Bx
i = Bx

i+1 w.p. one, then Ax
i = Ax

i+1 with probability
one, and it follows that Ai = Ax

i+1 is σ(Hx
i )-measurable. �

Theorem 3.5.3. The limit limi Ai exists almost surely.

Proof. As noted above, Ai = Ax
i+1. Assume by contradiction that

Ax
i+1 takes both values infinitely often. Since Ax

i = 1(Bx
i ≥ 1

2
), and

since Bx
i converges to Bx

∞, it follows that Bx
∞ = 1

2
.

Note that by the Markov chain nature of {Bx
i },

Bx
i+1 = f(Bx

i , Ai)(3.21)

for f : [0, 1]× {0, 1} → [0, 1] independent of i and given by

f(b, a) = E [Bi|Bx
i = b, Ai = a] .

Since Ai = 1(Bi ≥ 1
2
), it follows that Bi = |Bi − 1

2
|(2Ai − 1) + 1

2
, and

so

f(b, a) = E
[∣∣Bi − 1

2

∣∣∣∣Bx
i = b, Ai = a

]
(2a− 1) + 1/2.

Hence f is continuous at (1/2, 1) and (1/2, 0), even if Bi = 1
2
with

positive probability. It follows by taking the limit of (3.21) that if
limi B

x
i = 1/2 then f(1/2, 1) = f(1/2, 0). But then Bx

i would equal
f(1/2, ·) for all i, since Bx

0 = 1/2, and Ax
i = 1 for all i, which is a

contradiction. �

Since limi Ai exists almost surely we can define

A = lim
i
Ai.

Since Ai 6= A for only a finite number of agents, we can directly apply
Theorem 3.4.4 to arrive at the following result.

Theorem 3.5.4. When private signals are unbounded then A = S
w.p. one.

When private signals are bounded then information cascades occur
with probability one, and A is no longer almost surely equal to S.

Theorem 3.5.5. When private signals are bounded then P [A = S] <
1.
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Proof. When private signals are bounded then the convex closure
of the support of Pi is equal to [ε,M ] for some ε,M > 0. It follows
then from (3.20) that if Lx

i ≤ 1/M then a.s. Li ≤ 1, and so Ai = 1.
Likewise, if Lx

i > 1/ε then a.s. Ai = 0. Hence [0, 1/M ] and (1/ε,∞)
are all fixed points of M.

Note that P [Ax
i = S|Hx

i ] = max{Bx
i , 1−Bx

i }. Hence we can prove
the claim by showing that Bx

∞ = limi B
x
i is in (0, 1), since then it would

follow that limi P [Ax
i = S] < 1, and in particular P [limi Ai = S] < 1.

Indeed, condition on S = 1, and assume by contradiction that
limi B

x
i = 1. Then Lx

i will equal some δ ∈ (0, 1/M) for i large enough.
But δ is a fixed point of M, and so Lx

j will equal δ hence and Bx
i will

not converge to one. The same argument applies if we condition on
S = 0 and argue that Lx

i will equal some N ∈ (1/ε,∞) for i large
enough. �

3.6. Learning from discrete actions on networks

This section is adapted from Mossel, Sly and Tamuz [34].
In this section we study asymptotic learning on general (undirected)

social networks. We here choose to dive more deeply into the proofs - as
compared to the previous sections of this survey - in order to showcase
the various techniques needed to tackle this problem. These techniques
include graph limits (Section 3.6.2), a notion of δ-independence (Sec-
tion 3.6.4) and more. Indeed, the proof of the main result of this
section, Theorem 3.6.2, does not (as far as we know) admit a short in-
tuitive explanation, but rather requires the introduction and digestion
of some abstract ideas, and in particular the topology on rooted graphs
that we define and analyze in Section 3.6.2.

We study general social networks that are undirected, and con-
sider both the finite and the countably infinite case. We consider agents
who maximize, at each time t, the utility function (see (3.6))

U i
t = 1(Ai

t = S).

Hence they choose actions using (3.9):

Ai
t = argmaxs∈{0,1} P

[
S = s

∣∣H i
t

]
.

We ask the following questions:

(1) Agreement. Do the agents reach agreement? In this model
we say that i and j agree if Ai

∞ = Aj
∞. This happens under a

weak condition on the private signals.
(2) Learning. When the agents do agree on some limit action

A∞, does this action equal S? The answer to this question
depends on the graph, and that for undirected graphs indeed
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A∞ = S with high probability (for large finite graphs) or with
probability one (for infinite graphs).

The condition on private signals that implies agreement on limit
actions is the following. By the definition of beliefs, Bi

0 = P [S = 1|Wi].
We say that the private signals induce non-atomic beliefs when the
distribution of Bi

0 is non-atomic. The rational behind this definition is
that it precludes the possibility of indifference or ties.

Theorem 3.6.1. Let (µ0, µ1) induce non-atomic beliefs. Then there
exists a random variable A∞ such that almost surely Ai

∞ = A∞ for all
i.

We refer the reader to [34] for a proof of this Theorem. In Sec-
tion 3.6.6 we give an example that shows that this claim indeed does
not necessarily hold when private signals are atomic.

The following theorem states that when such agreement is guaran-
teed then the agents learn the state of the world with high probability,
when the number of agents is large. This phenomenon is known as
asymptotic learning.

Theorem 3.6.2 (Mossel, Sly and Tamuz). Let µ0, µ1 be such that
for every connected, undirected graph G there exists a random variable
A∞ such that almost surely Ai

∞ = A∞ for all u ∈ V . Then there exists
a sequence q(n) = q(n, µ0, µ1) such that q(n) → 1 as n → ∞, and
P [A∞ = S] ≥ q(n), for any choice of undirected, connected graph G
with n agents.

Informally, when agents agree on limit action sets then they nec-
essarily learn the correct state of the world, with probability that ap-
proaches one as the number of agents grows. This holds uniformly over
all possible connected and undirected social network graphs.

The following theorem is a direct consequence of the two theorems
above, since the property proved by Theorem 3.6.1 is the condition
required by Theorem 3.6.2.

Theorem 3.6.3. Let µ0 and µ1 induce non-atomic beliefs. Then
there exists a sequence q(n) = q(n, µ0, µ1) such that q(n) → 1 as n →
∞, and P [Ai

∞ = S] ≥ q(n), for all agents i and for any choice of
undirected, connected G with n agents.

Before delving into the proof of Theorem 3.6.2 we introduce addi-
tional definitions in 3.6.1 and prove some general lemmas in 3.6.2, 3.6.3
and 3.6.4.
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3.6.1. Additional general notation. We denote the actions of
the neighbors of i up to time t by

I it = {Aj
t′ : j ∈ ∂i, t′ < t},

and let I i∞ denote all the actions of i’s neighbors:

I i∞ = {Aj
[0,∞) : j ∈ ∂i} = {Aj

t′ : j ∈ ∂i, t′ ≥ 0}.
We denote the probability that i chooses the correct action at time

t by

pit = P
[
Ai

t = S
]
.

and accordingly

pi∞ = lim
t→∞

pit.

For a set of vertices U ⊆ V we denote by W (U) the private signals
of the agents in U .

3.6.2. Sequences of rooted graphs and their limits. In this
section we define a topology on undirected, connected rooted graphs.
We call convergence in this topology convergence to local limits, and
use it repeatedly in the proof of Theorem 3.6.2. The core of the proof
of Theorem 3.6.2 is the topological Lemma 3.6.6, which we prove here.
This lemma is a claim related to local graph properties, which we also
introduce here.

Let G = (V,E) be an undirected, connected, finite or countably
infinite graph, and let i ∈ V be a vertex in G. We denote by (G, i) the
rooted graph G with root i.

Let G = (V,E) and G′ = (V ′, E ′) be graphs. h : V → V ′ is a graph
isomorphism between G and G′ if (i, j) ∈ E ⇔ (h(i), h(j)) ∈ E ′.

Let (G, i) and (G′, i′) be rooted graphs. Then h : V → V ′ is
a rooted graph isomorphism between (G, i) and (G′, i′) if h is a
graph isomorphism and h(u) = u′.

We write (G, i) ∼= (G′, i′) whenever there exists a rooted graph
isomorphism between the two rooted graphs.

Given a graph G = (V,E) and two vertices i, j ∈ V , the graph
distance d(i, j) is equal to the length in edges of a shortest (directed)
path between i and j. We denote by Br(G, i) the ball of radius r around
the vertex i in the graph G = (V,E): Let V ′ be the set of vertices j
such that d(i, j) is at most r. Let E ′ = {(i, j) ∈ E : i, j ∈ V ′}. Then
Br(G, i) is the rooted graph with vertices V ′, edges E ′ and root i′.

We next define a topology on (undirected, connected) rooted graphs
(or rather on their isomorphism classes; we shall simply refer to these
classes as graphs). A natural metric between rooted graphs is the
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following (see Benjamini and Schramm [7], Aldous and Steele [1]).
Given (G, i) and (G′, i′), let

D((G, i), (G′, i′)) = 2−R,

where

R = sup{r : Br(G, i) ∼= Br(G
′, i′)}.

This is indeed a metric: the triangle inequality follows immediately,
and a standard diagonalization argument is needed to show that if
D((G, i), (G′, i′)) = 0 then B∞(G, i) ∼= B∞(G′, i′) and so (G, i) ∼=
(G′, i′).

This metric induces a topology that will be useful to us. As usual,
the basis of this topology is the set of balls of the metric; the ball of
radius 2−R around the graph (G, i) is the set of graphs (G′, i′) such
that BR(G, i) ∼= BR(G

′, i′). We refer to convergence in this topology
as convergence to a local limit, and provide the following equivalent
definition for it.

Let {(Gr, ir)}∞r=1 be a sequence of rooted graphs. We say that the
sequence converges if there exists a rooted graph (G′, i′) such that

Br(G
′, i′) ∼= Br(Gr, ir),

for all r ≥ 1. We then write

(G′, i′) = lim
r→∞

(Gr, ir),

and call (G′, i′) the local limit of the sequence {(Gr, ir)}∞r=1.
Let Gd be the set of rooted graphs with degree at most d.
Exercise. Show that Gd is compact, and deduce from that the

following lemma:

Lemma 3.6.4. Let {(Gr, ir)}∞r=1 be a sequence of rooted graphs in
Gd. Then there exists a subsequence {(Gri , irn)}∞n=1 with rn+1 > rn for
all n, such that limn→∞(Grn , urn) exists.

We next define local properties of rooted graphs. Let P be property
of rooted graphs or a Boolean predicate on rooted graphs. We write
(G, i) ∈ P if (G, i) has the property, and (G, i) /∈ P otherwise.

We say that P is a local property if, for every (G, i) ∈ P there
exists an r > 0 such that if Br(G, i) ∼= Br(G

′, i′), then (G′, i′) ∈ P .
Let r be such that Br(G, i) ∼= Br(G

′, i′) ⇒ (G′, i′) ∈ P . Then we say
that (G, i) has property P with radius r, and denote (G, i) ∈ P (r).
That is, if (G, i) has a local property P then there is some r such that
knowing the ball of radius r around i in G is sufficient to decide that
(G, i) has the property P .
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An alternative name for a local property would therefore be a locally
decidable property. In our topology, local properties are nothing but
open sets: the definition above states that if (G, i) ∈ P then there
exists an element of the basis of the topology that includes (G, i) and
is also in P . This is a necessary and sufficient condition for P to be
open.

We use this fact to prove the following lemma. Let Bd be the set of
infinite, connected, undirected graphs of degree at most d, and let Br

d

be the set of Bd-rooted graphs

Br
d = {(G, i) : G ∈ Bd, i ∈ G}.

Exercise. Prove the following lemma.

Lemma 3.6.5. Br
d is compact.

We now state and prove the main lemma of this section. Note that
the set of graphs Bd satisfies the conditions of this lemma.

Lemma 3.6.6. Let A be a set of infinite, connected graphs, let Ar

be the set of A-rooted graphs

Ar = {(G, i) : G ∈ A, i ∈ G},
and assume that A is such that Ar is compact.

Let P be a local property such that for each G ∈ A there exists a
vertex j ∈ G such that (G, j) ∈ P . Then for each G ∈ A there exist an
r0 and infinitely many distinct vertices {jn}∞n=1 such that (G, jn) ∈ P (r0)

for all n.

Proof. Let G be an arbitrary graph in A. Consider a sequence
{kr}∞r=1 of vertices in G such that for all r, s ∈ N the balls Br(G, kr)
and Bs(G, ks) are disjoint.

Since Ar is compact, the sequence {(G, kr)}∞r=1 has a converging
subsequence {(G, krn)}∞n=1 with rn+1 > rn. Write ir = krn , and let

(G′, i′) = lim
r→∞

(G, ir).

Note that since Ar is compact, (G′, i′) ∈ Ar and in particular G′ ∈ A
is an infinite, connected graph. Note also that since rn+1 > rn, it also
holds that the balls Br(G, ir) and Bs(G, is) are disjoint for all r, s ∈ N.

Since G′ ∈ A, there exists a vertex j′ ∈ G′ such that (G′, j′) ∈ P .
Since P is a local property, (G′, j′) ∈ P (r0) for some r0, so that if
Br0(G

′, j′) ∼= Br0(G, j) then (G, j) ∈ P .
Let R = d(i′, j′) + r0, so that Br0(G

′, j′) ⊆ BR(G
′, i′). Then, since

the sequence (G, ir) converges to (G′, i′), for all r ≥ R it holds that
BR(G, ir) ∼= BR(G

′, i′). Therefore, for all r > R there exists a vertex
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u1 u2
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u3

3

uR

R
wR

r0G

w′

r0

u′

R

G′

local limit

Figure 1. Schematic diagram of the proof of
lemma 3.6.6. The rooted graph (G′, i′) is a local limit
of (G, ir). For r ≥ R, the ball BR(G

′, i′) is isomorphic to
the ball BR(G, ir), with w′ ∈ G′ corresponding to jr ∈ G.

jr ∈ BR(G, jr) such that Br0(G, jr) ∼= Br0(G
′, j′). Hence (G, jr) ∈ P (r0)

for all r > R (see Fig 1). Furthermore, for r, s > R, the balls BR(G, ir)
and BR(G, is) are disjoint, and so jr 6= js.

We have therefore shown that the vertices {jr}r>R are an infinite
set of distinct vertices such that (G, jr) ∈ P (r0), as required.

�

3.6.3. Coupling isomorphic balls. This section includes tech-
nical claims that we will use later. Their spirit is that everything that
happens to an agent up to time t depends only on the state of the world
and a ball of radius t around it. We leave their proofs as an exercise.

Lemma 3.6.7. Consider two processes with identical private signal
distributions (µ0, µ1), on different graphs G = (V,E) and G′ = (V ′, E ′).
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Let t ≥ 1, i ∈ V and i′ ∈ V ′ be such that there exists a rooted graph
isomorphism h : Bt(G, i) → Bt(G

′, i′).
Let M be a random variable that is measurable in σ(H i

t). Then
there exists an M ′ that is measurable in H i′

t such that the distribution
of (M,S) is identical to the distribution of (M ′, S ′).

In particular, we use this lemma in the case whereM is an estimator
of S. Then this lemma implies that the probability thatM = S is equal
to the probability that M ′ = S ′.

Recall that pit = P [Ai
t = S] = maxA∈σ(Hi

t)
P [A = S]. Hence we can

apply this lemma (3.6.7) above to Ai
t and Ai′

t :

Corollary 3.6.8. If Bt(G, i) and Bt(G
′, i′) are isomorphic then

pit = pi′(t).

3.6.4. δ-independence. To prove that agents learn S we will
show that the agents must, over the duration of this process, gain
access to a large number of measurements of S that are almost inde-
pendent. To formalize the notion of almost-independence we define
δ-independence and prove some easy results about it. The proofs in
this section are again left as an exercise to the reader.

Let µ and ν be two measures defined on the same space. We denote
the total variation distance between them by dTV(µ, ν). Let A and B
be two random variables with joint distribution µ(A,B). Then we denote
by µA the marginal distribution of A, µB the marginal distribution of
B, and µA×µB the product distribution of the marginal distributions.

Let (X1, X2, . . . , Xk) be random variables. We refer to them as δ-
independent if their joint distribution µ(X1,...,Xk) has total variation
distance of at most δ from the product of their marginal distributions
µX1 × · · · × µXk

:

dTV(µ(X1,...,Xk), µX1 × · · · × µXk
) ≤ δ.

Likewise, (X1, . . . , Xl) are δ-dependent if the distance between the
distributions is more than δ.

Claim 3.6.9. Let A, B and C be random variables such that P [A 6= B] ≤
δ and (B,C) are δ′-independent. Then (A,C) are 2δ+ δ′-independent.

Claim 3.6.10. Let (X,Y ) be δ-independent, and let Z = f(Y,B)
for some function f and B that is independent of both X and Y . Then
(X,Z) are also δ-independent.

Claim 3.6.11. Let A = (A1, . . . , Ak), and X be random variables.
Let (A1, . . . , Ak) be δ1-independent and let (A,X) be δ2-independent.
Then (A1, . . . , Ak, X) are (δ1 + δ2)-independent.
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As an application of these claim we state the following lemma. The
proof is again left as a (non-trivial) exercise.

Lemma 3.6.12. For every 1/2 < p < 1 there exist δ = δ(p) > 0
and η = η(p) > 0 such that if S and (X1, X2, X3) are binary ran-
dom variables with P [S = 1] = 1/2, 1/2 < p−η ≤ P [Xi = S] < 1, and
(X1, X2, X3) are δ-independent conditioned on S then P [a(X1, X2, X3) = S] >
p, where a is the MAP estimator of S given (X1, X2, X3).

In other words, one’s odds of guessing S using three conditionally
almost-independent bits are greater than using a single bit.

3.6.5. Asymptotic learning. In this section we prove Theorem 3.6.2.
To prove this theorem we will need a number of intermediate results,
which are given over the next few sections.

3.6.5.1. Estimating the limiting optimal action set A∞. We would
like to show that although the agents have a common optimal action
set A∞ only at the limit t → ∞, they can estimate this set well at a
large enough time t.

The action Ai
t is agent i’s MAP estimator of S at time t. We likewise

define Ki
t to be agent i’s MAP estimator of A∞, at time t:

Ki
t = argmaxK∈0,1,{0,1}} P

[
A∞ = K

∣∣H i
t

]
.(3.22)

We show that the sequence of random variables Ki
t converges to A∞

for every i, or that alternatively Ki
t = A∞ for each agent i and t large

enough:

Lemma 3.6.13. P [limt→∞Ki
t = A∞] = 1 for all i ∈ V .

Lemma 3.6.13 follows by direct application of the more general
Lemma 3.6.14 which we leave as an exercise. Note that a consequence
is that limt→∞ P [Ki

t = A∞] = 1.
Exercise. Prove the following lemma.

Lemma 3.6.14. Let K1 ⊆ K2, . . . be a filtration of σ-algebras, and let
K∞ = ∪tKt. Let K be a random variable that takes a finite number of
values and is measurable in K∞. Let M(t) = argmaxk P [K = k|K(t)]
be the MAP estimator of K given Kt. Then

P
[
lim
t→∞

M(t) = K
]
= 1.

We would like at this point to provide the reader with some more
intuition on Ai

t, K
i
t and the difference between them. Assuming that

A∞ = 1 then by definition, from some time t0 on, Ai
t = 1, and from

Lemma 3.6.13, Ki
t = 1. The same applies when A∞ = 0. However,

when A∞ = {0, 1} then Ai
t takes both values 0 and 1 infinitely often,
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but Ki
t will eventually equal {0, 1}. That is, agent i will realize at some

point that, although it thinks at the moment that 1 is preferable to 0
(for example), it is in fact the most likely outcome that its belief will
converge to 1/2. In this case, although it is not optimal, a uniformly
random guess of which is the best action may not be so bad. Our next
definition is based on this observation.

Based on Ki
t , we define a second “action” Ci

t . Let Ci
t be picked

uniformly from Ki
t : if Ki

t = 1 then Ci
t = 1, if Ki

t = 0 then Ci
t = 0,

and if Ki
t = {0, 1} then Ci

t is picked independently from the uniform
distribution over {0, 1}.

Note that we here extend our probability space by including in I it
(the observations of agent i up to time t) an extra uniform bit that is
independent of all else and S in particular. Hence this does not increase
i’s ability to estimate S, and if we can show that in this setting i learns
S then i can also learn S without this bit. In fact, we show that
asymptotically it is as good an estimate for S as the best estimate Ai

t:

Claim 3.6.15.

lim
t→∞

P
[
Ci

t = S
]
= lim

t→∞
P
[
Ai

t = S
]
= p

for all i.

Exercise. Prove Claim 3.6.15.
3.6.5.2. The probability of getting it right. Recall that pit = P [Ai

t = S]
and pi∞ = limt→∞ pit (i.e., p

i
t is the probability that agent i takes the

right action at time t). We state here a few easy related claims that
will later be useful to us. The next claim is a rephrasing of the first
part of Claim 3.1.2.

Claim 3.6.16. pit+1 ≥ pit.

The following claim is a rephrasing of Corollary 3.1.3.

Claim 3.6.17. There exists a p ∈ [0, 1] such that pi∞ = p for all i.

We make the following definition in the spirit of these claims:

p = lim
t→∞

P
[
Ai

t = S
]
.

In the context of a specific social network graph G we may denote this
quantity as p(G).

For time t = 1 the next standard claim follows from the fact that
the agents’ signals are informative.

Claim 3.6.18. pit > 1/2 for all i and t.
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Recall that |∂i| is the out-degree of i, or the number of neighbors
that i observes. The next lemma states that an agent with many
neighbors will have a good estimate of S already at the second round,
after observing the first action of its neighbors.

Lemma 3.6.19. There exist constants C1 = C1(µ0, µ1) and C2 =
C2(µ0, µ1) such that for any agent i it holds that

pi1 ≥ 1− C1e
−C2·|∂i|.

Intuitively, this follows from the fact that i’s neighbors will provide
him with |∂i| independent signals. We leave the proof as an exercise.

The following claim is a direct consequence of the previous lemmas
of this section.

Claim 3.6.20. Let d(G) = sup{|∂i|} be the out-degree of the graph
G; note that for infinite graphs it may be that d(G) = ∞. Then there
exist constants C1 = C1(µ0, µ1) and C2 = C2(µ0, µ1) such that

p(G) ≥ 1− C1e
−C2·d(G).

Proof. Let i be an arbitrary vertex in G. Then by Lemma 3.6.19
it holds that

pi1 ≥ 1− C1e
−C2·∂i,

for some constants C1 and C2. By Lemma 3.6.16 we have that pit+1 ≥ pit,
and therefore

pi∞ = lim
n→∞

pit ≥ 1− C1e
−C2·∂i.

Finally, p(G) = pi∞ by Lemma 3.6.17, and so

pi∞ ≥ 1− C1e
−C2·∂i.

Since this holds for an arbitrary vertex i, the claim follows. �

3.6.5.3. Local limits and pessimal graphs. We now turn to apply
local limits to our process. We consider here and henceforth the same
model as applied, with the same private signals, to different graphs.
We write p(G) for the value of p on the process on G, A∞(G) for the
value of A∞ on G, etc.

Lemma 3.6.21. Let (G, i) = limr→∞(Gr, ir). Then p(G) ≤ lim infr p(Gr).

Proof. Since Br(Gr, ir) ∼= Br(G, i), by Lemma 3.6.8 we have that
pir = pirr . By Claim 3.6.16 pirr ≤ p(Gr), and therefore pir ≤ p(Gr). The
claim follows by taking the limit inferior of both sides. �



3.6. LEARNING FROM DISCRETE ACTIONS ON NETWORKS 49

Recall that Bd denotes the set of infinite, connected, undirected
graphs of degree at most d. Let

B =
⋃
d

Bd.

Let

p∗ = p∗(µ0, µ1) = inf
G∈B

p(G)

be the probability of learning in the pessimal graph.
Note that by Claim 3.6.18 we have that p∗ > 1/2. We show that

this infimum is in fact attained by some graph:

Lemma 3.6.22. There exists a graph H ∈ B such that p(H) = p∗.

Proof. Let {Gr = (Vr, Er)}∞r=1 be a series of graphs in B such
that limr→∞ p(Gr) = p∗. Note that {Gr} must all be in Bd for some
d (i.e., have uniformly bounded degrees), since otherwise the sequence
p(Gr) would have values arbitrarily close to 1 and its limit could not
be p∗ (unless indeed p∗ = 1, in which case our main Theorem 3.6.2 is
proved). This follows from Lemma 3.6.19.

We now arbitrarily mark a vertex ir in each graph, so that ir ∈ Vr,
and let (H, i) be the limit of some subsequence of {Gr, ir}∞r=1. Since Bd

is compact (Lemma 3.6.5), (H, i) is guaranteed to exist, and H ∈ Bd.
By Lemma 3.6.21 we have that p(H) ≤ lim infr p(Gr) = p∗. But

since H ∈ B, p(H) cannot be less than p∗, and the claim is proved. �

3.6.5.4. Independent bits. We now show that on infinite graphs, the
private signals in the neighborhood of agents that are “far enough
away” are (conditioned on S) almost independent of A∞ (the final
consensus estimate of S).

Lemma 3.6.23. Let G be an infinite graph. Fix a vertex i0 in G.
Then for every δ > 0 there exists an rδ such that for every r ≥ rδ and
every vertex i with d(i0, i) > 2r it holds that W (Br(G, i)), the private
signals in Br(G, i), are δ-independent of A∞, conditioned on S.

Here we denote graph distance by d(·, ·).

Proof. Fix i0, and let i be such that d(i0, u) > 2r. Then Br(G, i0)
and Br(G, i) are disjoint, and hence independent conditioned on S.
Hence Ki0

r is independent of W (Br(G, i)), conditioned on S.
Lemma 3.6.13 states that P [limr→∞ Ki0

r = A∞] = 1, and so there
exists an rδ such that for every r ≥ rδ it holds that P [Ki0

r = A∞] >
1− 1

2
δ.
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Recall Claim 3.6.9: for any A,B,C, if P [A = B] = 1− 1
2
δ and B is

independent of C, then (A,C) are δ-independent.
Applying Claim 3.6.9 to A∞, Ki0

r and W (Br(G, i)) we get that for
any r greater than rδ it holds that W (Br(G, i)) is δ-independent of A∞,
conditioned on S. �

We will now show, in the lemmas below, that in infinite graphs each
agent has access to any number of “good estimators”: δ-independent
measurements of S that are each almost as likely to equal S as p∗, the
minimal probability of estimating S on any infinite graph.

We say that agent i ∈ G has k (δ, ε)-good estimators if there
exists a time t and estimatorsM1, . . . ,Mk such that (M1, . . . ,Mk) ∈ H i

t

and

(1) P [Mi = S] > p∗ − ε for 1 ≤ i ≤ k.
(2) (M1, . . . ,Mk) are δ-independent, conditioned on S.

The proof of the next claim is straightforward.

Claim 3.6.24. Let P denote the property of having k (δ, ε)-good
estimators. Then P is a local property of the rooted graph (G, i). Fur-
thermore, if u ∈ G has k (δ, ε)-good estimators measurable in H i

t then
(G, i) ∈ P (t), i.e., (G, i) has property P with radius t.

We are now ready to prove the main lemma of this subsection:

Lemma 3.6.25. For every d ≥ 2, G ∈ Bd, ε, δ > 0 and k ≥ 0 there
exists a vertex i, such that i has k (δ, ε)-good estimators.

Informally, this lemma states that if G is an infinite graph with
bounded degrees, then there exists an agent that eventually has k
almost-independent estimates of S with quality close to p∗, the minimal
probability of learning.

Proof. In this proof we use the term “independent” to mean “in-
dependent conditioned on S”.

We choose an arbitrary d and prove by induction on k. The basis
k = 0 is trivial. Assume the claim holds for k, any G ∈ Bd and all
ε, δ > 0. We shall show that it holds for k + 1, any G ∈ Bd and any
δ, ε > 0.

By the inductive hypothesis for every G ∈ Bd there exists a vertex
in G that has k (δ/100, ε)-good estimators (M1, . . . ,Mk).

Now, having k (δ/100, ε)-good estimators is a local property (Claim 3.6.24).
We now therefore apply Lemma 3.6.6: since every graph G ∈ Bd has a
vertex with k (δ/100, ε)-good estimators, any graph G ∈ Bd has a time
tk for which infinitely many distinct vertices {jr} have k (δ/100, ε)-good
estimators measurable at time tk.
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In particular, if we fix an arbitrary i0 ∈ G then for every r there
exists a vertex j ∈ G that has k (δ/100, ε)-good estimators and whose
distance d(i0, j) from i0 is larger than r.

We shall prove the lemma by showing that for a vertex j that is far
enough from i0 which has (δ/100, ε)-good estimators (M1, . . . ,Mk), it
holds that for a time tk+1 large enough (M1, . . . ,Mk, C

j
tk+1

) are (δ, ε)-
good estimators.

By Lemma 3.6.23 there exists an rδ such that if r > rδ and d(i0, j) >
2r thenW (Br(G, j)) is δ/100-independent ofA∞. Let r∗ = max{rδ, tk},
where tk is such that there are infinitely many vertices in G with k good
estimators measurable at time tk.

Let j be a vertex with k (δ/100, ε)-good estimators (M1, . . . ,Mk)
at time tk, such that d(i0, j) > 2r∗. Denote

M̄ = (M1, . . . ,Mk).

Since d(i0, j) > 2rδ, W (Br∗(G, j)) is δ/100-independent of A∞, and
since Btk(G, j) ⊆ Br∗(G, j), W (Btk(G, j)) is δ/100-independent of A∞.

Finally, since M̄ ∈ σ(Hj
tk
), M̄ is a function of W (Btk(G, j)), and so by

Claim 3.6.10 we have that M̄ is also δ/100-independent of A∞.
For tk+1 large enough it holds that

• Kj
tk+1

is equal to A∞ with probability at least 1− δ/100, since

lim
t→∞

P
[
Kj

t = A∞
]
= 1,

by Claim 3.6.13.
• Additionally, P

[
Cj

tk+1
= S

]
> p∗ − ε, since

lim
t→∞

P
[
Cj

t = S
]
= p ≥ p∗,

by Claim 3.6.15.

We have then that (M̄, A∞) are δ/100-independent and P
[
Kj

tk+1
6= A∞

]
≤

δ/100. Claim 3.6.9 states that if (A,B) are δ-independent P [B 6= C] ≤
δ′ then (A,C) are δ + 2δ′-independent. Applying this here we get that
(M̄,Kj

tk+1
) are δ/25-independent.

It follows by application of Claim 3.6.11 that (M1, . . . ,Mk, K
jtk+1)

are δ-independent. Since Cj
tk+1

is a function of Kj
tk+1

and an inde-
pendent bit, it follows by another application of Claim 3.6.10 that
(M1, . . . ,Mk, C

j
tk+1

) are also δ-independent.

Finally, since P
[
Cj

tk+1
= S

]
> p∗ − ε, j has the k + 1 (δ, ε)-good

estimators (M1, . . . , C
j
tk+1

) and the proof is concluded.
�
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3.6.5.5. Asymptotic learning. As a tool in the analysis of finite
graphs, we would like to prove that in infinite graphs the agents learn
the correct state of the world almost surely.

Theorem 3.6.26. Let G = (V,E) be an infinite, connected undi-
rected graph with bounded degrees (i.e., G is a general graph in B).
Then p(G) = 1.

Note that an alternative phrasing of this theorem is that p∗ = 1.

Proof. Assume the contrary, i.e. p∗ < 1. Let H be an infinite,
connected graph with bounded degrees such that p(H) = p∗, such as
we have shown exists in Lemma 3.6.22.

By Lemma 3.6.25 there exists for arbitrarily small ε, δ > 0 a vertex
w ∈ H that has access at some time T to three δ-independent estima-
tors (conditioned on S), each of which is equal to S with probability at
least p∗−ε. By Claims 3.6.12 and 3.6.18, the MAP estimator of S using
these estimators equals S with probability higher than p∗, for the ap-
propriate choice of low enough ε, δ. Therefore, since j’s action Aj

t is the
MAP estimator of S, its probability of equaling S is P

[
Aj

t = S
]
> p∗

as well, and so p(H) > p∗ - contradiction. �

Using Theorem 3.6.26 we can now prove Theorem 3.6.2, which is
the corresponding theorem for finite graphs:

Proof of Theorem 3.6.2. Assume the contrary. Then there ex-
ists a series of graphs {Gr} with r agents such that limr→∞ P [A∞(Gr) = S] <
1, and so also limr→∞ p(Gr) < 1.

By the same argument of Theorem 3.6.26 these graphs must all be
in Bd for some d, since otherwise, by Lemma 3.6.20, there would exist a
subsequence of graphs {Grd} with degree at least d and limd→∞ p(Grd) =
1. Since Bd is compact (Lemma 3.6.5), there exists a graph (G, i) ∈ Bd

that is the limit of a subsequence of {(Gr, ir)}∞r=1.
Since G is infinite and of bounded degree, it follows by Theo-

rem 3.6.26 that p(G) = 1, and in particular limr→∞ pi∞(r) = 1. As
before, pir(r) = pi∞(r), and therefore limr→∞ pir(r) = 1. Since p(Gr) ≥
pir(r), limr→∞ p(Gr) = 1, which is a contradiction. �

3.6.6. Example of Non-atomic private beliefs leading to
non-learning. We sketch an example in which private beliefs are atomic
and asymptotic learning does not occur.

Example 3.6.27. Let the graph G be the undirected chain of length
n, so that V = {1, . . . , n} and (i, j) is an edge if |i − j| = 1. Let
the private signals be bits that are each independently equal to S with
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probability 2/3. We choose here the tie breaking rule under which agents
defer to their original signals1.

We leave the following claim as an exercise to the reader.

Claim 3.6.28. If an agent i has at least one neighbor with the same
private signal (i.e., Wi = Wj for j a neighbor of i) then i will always
take the same action Ai

t = Wi.

Since this happens with probability that is independent of n, with
probability bounded away from zero an agent will always take the
wrong action, and so asymptotic learning does not occur. It is also
clear that optimal action sets do not become common knowledge, and
these fact are indeed related.

1We conjecture that changing the tie-breaking rule does not produce asymptotic
learning, even for randomized tie-breaking.
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décisions rendues à la pluralité des voix. De l’Imprimerie Royale, 1785.

[13] A. DasGupta. Asymptotic theory of statistics and probability. Springer Verlag,
2008.

[14] M. H. DeGroot. Reaching a consensus. Journal of the American Statistical
Association, 69(345):118–121, 1974.

[15] P. DeMarzo and C. Skiadas. On the uniqueness of fully informative rational
expectations equilibria. Economic Theory, 13(1):1–24, 1999.

[16] J. L. Doob. Stochastic Processes. John Wiley and Sons, 1953.
[17] J. L. Doob. Classical potential theory and its probabilistic counterpart, volume

262. Springer, 2001.

55



56 BIBLIOGRAPHY

[18] D. Gale and S. Kariv. Bayesian learning in social networks. Games and Eco-
nomic Behavior, 45(2):329–346, November 2003.

[19] J. Geanakoplos. Common knowledge. Handbook of game theory with economic
applications, 2:1437–1496, 1994.

[20] J. Geanakoplos and H. Polemarchakis. We can’t disagree forever. Journal of
Economic Theory, 28(1):192–200, 1982.

[21] Y. Ginosar and R. Holzman. The majority action on infinite graphs: strings
and puppets. Discrete Mathematics, 215(1-3):59–72, 2000.

[22] E. Goles and J. Olivos. Periodic behaviour of generalized threshold functions.
Discrete Mathematics, 30(2):187–189, 1980.

[23] B. Golub and M. O. Jackson. Naive learning in social networks and the wisdom
of crowds. American Economic Journal: Microeconomics, 2(1):112–149, 2010.

[24] W. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American statistical association, 58(301):13–30, 1963.

[25] R. A. Holley and T. M. Liggett. Ergodic theorems for weakly interacting in-
finite systems and the voter model. The annals of probability, pages 643–663,
1975.

[26] J. Kahn, G. Kalai, and N. Linial. The influence of variables on boolean func-
tions. In Proceedings of the 29th Annual Symposium on Foundations of Com-
puter Science, pages 68–80, 1988.

[27] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov chains and mixing times.
AMS Bookstore, 2009.

[28] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. The Bulletin of Mathematical Biophysics, 5(4):115–133, 1943.

[29] G. Moran. On the period-two-property of the majority operator in infinite
graphs. Transactions of the American Mathematical Society, 347(5):1649–1668,
1995.

[30] E. Mossel, J. Neeman, and O. Tamuz. Majority dynamics and aggregation of
information in social networks. Autonomous Agents and Multi-Agent Systems,
pages 1–22, 2013.

[31] E. Mossel, N. Olsman, and O. Tamuz. Efficient bayesian learning in social
networks with gaussian estimators. In Proceedings of the 54th annual Allerton
conference on Communication, control, and computing. IEEE Press, 2016.

[32] E. Mossel and G. Schoenebeck. Reaching consensus on social networks. In
Proceedings of 1st Symposium on Innovations in Computer Science, pages
214–229, 2010.

[33] E. Mossel, A. Sly, and O. Tamuz. On agreement and learning. Preprint at
http://arxiv.org/abs/1207.5895, 2012.

[34] E. Mossel, A. Sly, and O. Tamuz. Asymptotic learning on bayesian social
networks. Probability Theory and Related Fields, pages 1–31, 2013.

[35] E. Mossel, A. Sly, and O. Tamuz. Strategic learning and the topology of social
networks. Econometrica, 83(5):1755–1794, 2015.

[36] M. J. Osborne and A. Rubinstein. A course in game theory. MIT press, 1994.
[37] M. Ostrovsky. Information aggregation in dynamic markets with strategic

traders. Econometrica, 80(6):2595–2647, 2012.
[38] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation rank-

ing: bringing order to the web. Stanford InfoLab, 1999.



BIBLIOGRAPHY 57

[39] D. Rosenberg, E. Solan, and N. Vieille. Informational externalities and emer-
gence of consensus. Games and Economic Behavior, 66(2):979–994, 2009.

[40] A. Rubinstein. Economic fables. Open Book Publishers, 2012.
[41] L. Saloff-Coste. Lectures on finite markov chains. In P. Bernard, editor, Lec-

tures on Probability Theory and Statistics, volume 1665 of Lecture Notes in
Mathematics, pages 301–413. Springer Berlin Heidelberg, 1997.

[42] J. Sebenius and J. Geanakoplos. Don’t bet on it: Contingent agreements
with asymmetric information. Journal of the American Statistical Association,
78(382):424–426, 1983.

[43] L. Smith and P. Sørensen. Pathological outcomes of observational learning.
Econometrica, 68(2):371–398, 2000.

[44] M. Talagrand. On Russo’s approximate zero-one law. The Annals of Probabil-
ity, 22(3):1576–1587, 1994.

[45] O. Tamuz and R. J. Tessler. Majority dynamics and the retention of informa-
tion. Israel Journal of Mathematics, 206(1):483–507, 2015.


	Chapter 1. Introduction
	1.1. Modeling opinion exchange
	1.2. Mathematical Connections
	1.3. Related Literature
	1.4. Framework
	1.5. General definitions
	1.6. Questions
	1.7. Acknowledgments

	Chapter 2. Heuristic Models
	2.1. The DeGroot model
	2.2. The voter model
	2.3. Deterministic iterated dynamics

	Chapter 3. Bayesian Models
	3.1. Agreement
	3.2. Continuous utility models
	3.3. Bounds on number of rounds in finite probability spaces
	3.4. From agreement to learning
	3.5. Sequential Models
	3.6. Learning from discrete actions on networks

	Bibliography

