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Abstract

We study a model of Bayesian agents in social networks who learn from the actions of their
neighbors. Most results concerning social learning in networks have been achieved either in
‘herd behavior’ models, where each agent acts only once, or in models where agents are not
Bayesian and use rules of thumb, or are boundedly rational. Models of Bayesian agents who
act repeatedly have posed two related problems: (1) they have proved notoriously difficult to
analyze; and (2) the calculations required of interacting Bayesian agents often seem intractable.

We consider a set of Bayesian agents who are attempting to iteratively estimate an unknown
‘state of the world’ s from their initial private signals, and the past actions of their neighbors in
a social network. When private signals are independent conditioned on s, and when the social
network graph is a tree, we provide an algorithm for the agents’ calculations with running time
that is exponentially lower than what is currently known.

We use this algorithm to perform the first numerical simulations of interacting Bayesian
agents on networks with hundreds of nodes, and observe rapid learning of s in some settings.

Keywords: social learning, Bayesian agents, computational efficiency, convergence, algorithm,
dynamic cavity method.

1 Introduction

The importance of social learning in networks has been demonstrated in a wide variety of settings
(e.g., adoption of agricultural technology in Ghana [9] and Mozambique [6], choice of contraceptives
by European women [19]). Accordingly, understanding mathematical models of social learning by
Bayesian agents has been a goal of theoretical economics for the past few decades (cf., Goyal [15]).
Typical models in this context assume a pure information externality; agent payoffs depend only
on the action they choose and an underlying ‘state of the world’, and not on the actions of others.
Agents observe the actions of their ‘neighbors’, but do not observe payoffs ex interim. Typically,
all agents have the same utility function. Each agent receives a private signal that contains noisy
information about the state of the world. Agents choose actions to maximize expected payoff, given
their own private signal and their observations of the actions chosen by others.

Fully Bayesian models have two advantages over models that assume ‘bounded rationality’ and
prescribe thumb rules for agent behavior: First, any bounded rationality approach is bound to
involve a somewhat arbitrary decision of which heuristics the agents use. Second, a game theoretic
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analysis of strategic players is possible only if the players choose actions that are optimal by some
criterion. Hence game-theoretic analyses of learning on networks (e.g., [25]) often opt for the more
difficult but fully Bayesian model.

Much progress has been achieved in models where Bayesian agents act sequentially, such as the
herd behavior models of Banerjee [7], Bikhchandani, Hirshleifer and Welch [8], Smith and Sgrenson
[27] and Acemoglu et al [2]. Here, the interaction is not bidirectional: each agent acts only once,
taking into account the actions of her predecessors. In comparison, our understanding of Bayesian
agents who act repeatedly is much more limited. Gale and Kariv [I3] consider Bayesian agents
on a network who repeatedly choose actions. They show, in the spirit of Aumann’s Agreement
Theorem [4], that agents on a network converge to the same action under some conditionsﬂ Related
work by Rosenberg, Solan and Vieille [25] and Ménager [20] sheds more light on the phenomenon
of agreement on actions and the conditions in which it arises.

However, the following questions remain essentially unanswered:

(I) What action do the agents converge to, e.g., what is the distribution of this consensus action?ﬂ
(IT) What are the dynamics of such interactions, e.g., what is the rate of agreement/convergence?

There has been a parallel development of non-Bayesian models of reasoning for social learning
and social experimentatiorﬂ e.g., those of Ellison and Fudenberg [12], Bala and Goyal [5], and
DeGroot [10]. Such modelling approaches appear to be driven by two primary motivating factors
(see, e.g., [12], [5]): (i) Real agents may not be Bayesian. (ii) The desire to “keep the model
mathematically tractable” [5], and also computationally tractableﬁ; since Bayesian models seem to
lack these properties. This leads us to another open question in the context of Bayesian agents who
act repeatedly:

(ITI) Are the computations required of the agents feasible?

We consider a model that features repeated bidirectional interaction between fully Bayesian
agents connected by a social network. Our model is a specialization of the model of Gale and
Kariv [I3]. We consider a group of Bayesian agents, each with a private signal that carries in-
formation on an unknown state of the world s. The individuals form a social network, so that
each observes the actions of some subset of others, whom we call her neighbors. The agents must
repeatedly choose between a set of possible actions, the relative merit of which depends on the state
of the world s. The agents iteratively learn by observing their neighbors’ actions, and picking an
action that is myopically optimal, given their information. Thus, the interaction between agents is
not strategic, and is characterized by information externalities.

Even in the simple case of two states of the world, binary private signals and two possible
actions, the required calculations appear to be very complicated. A naive dynamic programming
algorithnﬁ is exponential in the number of individuals. Since at iteration ¢t one may consider only
agents at distance ¢, then in graphs of maximum degree d (on which we focus) the number of

! A gap in the proof of Gale and Kariv’s agreement theorem was recently pointed out [21]. However, recent works
[25] 22] establish similar results in more general settings.

?In fact, convergence is not always obtained [25]. The exact conditions under which convergence occurs are not
known.

3Social experimentation settings are closely related to social learning settings: Here agents can observe (noisy)
payoffs received by themselves and their neighbors for different actions, and can use the results of these ‘experiments’
to learn.

4Mathematical and computational tractability often go together, e.g., see [16].

5 Although this algorithm seems to be well known, we could not find a complete description of it in the literature
and hence supply it for completeness in Section



individuals to consider is O(min(n,d")), and the computational effort required of each individual
to compute their action at time ¢ is ¢20 (min(n,d")) Obviously, this grows very rapidly. As Gale and
Kariv remark [13], “The computational difficulty of solving the model is massive even in the case
of three persons.” This prevents them from even simulating networks with more than three nodes.

We describe a novel algorithm for the agents’ calculation in our model, when the social network
graph is a tree or nearly a tree. This algorithm has running time that is exponentially smaller than
the naive dynamic program, reducing the computational effort to 20min(n.td),

Using our algorithm we are able to run numerical simulations of the social learning process. This
extends the work of Gale and Kariv [13], who simulated the process for three agents, to much larger
networksﬂ We use our algorithm to investigate questions () and : We numerically evaluate the
probability that the agents learn the optimal action, and its progress with time. We observe rapid
learning of the optimal action in certain previously unexplored settings: We consider a model with
two possible states of the world and two corresponding actions (‘votes’), so the agents are in effect
trying to estimate the state of the world and revealing their estimates to their neighbors. The social
networks in these analyses were chosen to be d-regular (infinite) trees, i.e., trees in which each node
has d neighbors. The simulations suggest that, on regular trees, the number of iterations needed
under Bayesian learning to estimate s correctly with probability 1 — € is O(loglog(1/¢)).

We conjecture that the error probability under Bayesian updates is no larger than the error
probability under a different ‘majority’ update rule, in which agents adopt the opinion of the
majority of their neighbors in the previous round. Our numerical results support this conjecture.
We prove that for the majority update rule, the number of iterations needed to estimate s correctly
with probability 1—eis O(loglog(1/¢)), for regular trees of degree at least ﬁveﬂ Our conjecture then
implies, again, that the number of iterations needed to estimate s correctly with probability 1 — €
is O(loglog(1/e)). Thus, assuming the conjecture, the computational effort required of Bayesian
agents drops from quasi-polynomial in 1/e (using the naive dynamic program) to polynomial in
log(1/€) (i.e., polylogarithmic in 1/¢), making Bayesian learning computationally tractable. Thus,
our results shed new light on question , suggesting a positive answer in the case of tree graphs.

Our algorithmic approach works provided the local neighborhood of a node is tree structured
(see Section . The restriction of the discussion to tree or tree-like social networks certainly
excludes many natural settings that tend to exhibit highly clustered social graphs. However, in some
cases artificially constructed networks have no or few loops by design; these include some highly
hierarchical or compartmentalized organizations, as well as some physical communication networks
where redundancy is expensive, and the least expensive connected network is a tree. Furthermore,
the fact that this non-trivial class of networks does not present a major computational hurdle for
fully Bayesian calculations may in itself be somewhat surprising.

Besides computational issues, another difficulty of the Gale and Kariv model is that it requires
the social graph to be common knowledge. A possible alternative to this is a modified model
that allows the agents to know only their own neighborhoods and the distribution from which the
rest of the graph was picked. We pursue this for a standard model of random graphs and show
that our computational approach extends to this case (see Section . We also consider that
nodes may not all be ‘active’ in each round, and that nodes may observe only a random subset of
active neighbors. We show that these features can be handled when ‘inactive’ edges/nodes occur
independently of each other and in time.

A key technique used in this paper is the dynamic cavity method, introduced by Kanoria and

In each of our numerical analyses, agents receive information (directly or indirectly) from hundreds of distinct
nodes.

"This result could be of independent interest. Majority dynamics is a reasonable model of social learning with
bounded rationality. It is also relevant in other contexts like consensus in distributed systems|24].



Montanari [I7] in their study of ‘majority updates’ on trees, a model also motivated by social learn-
ing. This technique is a dynamical version of the cavity method of statistical physics and appears
promising for the analysis of iterative tree processes in general. The key idea is the following: In
a dynamical setting on a tree graph, there is correlation in the trajectories of neighbors of a node
due to a nodes own past actions. The dynamic cavity method allows to exactly account for these
correlations. In this work, we use this method for the first time to give a new algorithmic result,
enabling efficient computation by nodes. This is in contrast to the case of majority updates, where
the update rule is computationally trivial. Our algorithmic and analytical approach leveraging
the dynamic cavity method may be applicable to a range of iterative update situations on locally
treelike graphs.

Our algorithm may be of interest beyond its computational implications. The form of the
Bayesian posterior belief that we obtain for trees (see Section , appears closely related ‘weighted
average’ type heuristic update rules [I0, [I1] that have been studied before. This suggests an
interesting direction for further study: What if agents on a loopy graph depart from rationality
only in assuming that their neighborhood is treelike? The heuristic update rule they employ is
then identical to the one we obtain. Thus, our work may suggest new ‘almost rational’ heuristic
update models for study on general loopy graphs. This is discussed in more detail in Section [8.2

1.1 Outline of the paper

We describe and discuss our model in Section 2l We state our main results in Section Bl Section []
presents a naive dynamic programming algorithm. Section [5] presents our main contribution: a dy-
namic cavity method based algorithm for tree graphs, along with a proof of correctness and analysis
of running time. Section |5.3|extends our algorithm in various directions. We prove our convergence
results in Section @ Section |7| discusses our conjecture regarding convergence (Conjecture and
presents numerical results. We conclude with a discussion in Section

2 Model

The model we consider is a simplified version of the model of social learning introduced by Gale
and Kariv [I3]. We first give a minimal mathematical description of our model, postponing a
discussion on knowledge assumptions and rationality. For ease of exposition, we make use of a
simple model that captures the essential features of the problem. In Section [2.1] we motivate our
model in the context of rational agents, state our knowledge assumptions, and explain how some of
our simplifications are merely cosmetic. The scaling regime we consider is described in Section
Finally, Section compares our model with other models, including that of Gale and Kariv [13].

Consider a directed graph G = (V, E), representing a network of agents, with V' being the set
of agents and E being the social ties between them. A directed edge (i,7) indicates that agent i
observes agent j. (In most of this paper, we study the special case of undirected graphs, where
relationships between agents are bidirectional.)

Agents attempt to learn the true state of the world s € S, where S is finite. Each agent i
receives a private signal x; € X', where X is finite. Private signals are independent conditioned on
s, i.e.,

Pls,21,....2n] = P[s] [ Pzils] .
1%

In each discrete time period (or round) ¢t = 0,1,..., the agents choose must choose an action



oi(t) € S, which we call a ‘Voteﬂ Agents observe the votes cast by their neighbors in G. Thus,
at the time of voting in round ¢ > 1, the information available to an agent consists of the private
signal she received initially, along with the votes cast by her neighbors in rounds up to t — 1. In
each round, each agent votes for the most likely state of the world that she currently believes is
most likely, given the Bayesian posterior distribution she computes.

We denote by i the neighbors of agent i, not including i, i.e., 9i = {j : (i,5) € E}. We
use 0! = (0;(0),04(1),...,0i(t)) to denote all of agent i’s votes, up to and including time ¢t. We
call o; = (04(0),04(1),...) the ‘trajectory’ of votes at node i. Denote by F} = (a:i,ag;l,af_l) the
information available to agent ¢ prior to voting in round ¢. Here ng.l denotes the votes cast by
nodes in 9i up to round ¢ — 1. Note that this does not include her neighbors’ votes at time ¢.

The vote o;(t) is chosen as argmax s P [s‘]—"ﬂ We assume a deterministic tie-breaking rule.
To differentiate the random variable o;(t) from the function used to calculate it, we denote the

function by g;(t) : X x |S|191 — S, so that
oi(t) = giy(xi, 05, ")

For convenience, we also define the vector function g! that returns the entire history of i’s votes up
to time ¢, ¢! = (9i0,9i1,---,Git), so that

o; = g;(xi,05;")

. . . . . . . . . . ,—
In case of a deterministic tie-breaking rule, o;(#') is a deterministic function of (z;, 0%, '), so we

can take F! = (z;, agz_.l).

2.1 Discussion of our Model

The decision rules can be interpreted /motivated as follows. Suppose P [s], P [z|s] and G are common
knowledge. Suppose that, for each state of the world s, action ¢ has utility one when the state of
the world is s = o, and zero otherwise. Then, the action that myopically maximizes the expected
utility corresponds to the maximum a posteriori probability (MAP) estimator of the state of the
world. This leads to the decision rule we consider, with ¢;(t) being chosen as arg max g P [s‘}"ﬂ
We would like to emphasize that we only restrict the ‘action’ space A to S (thus calling actions
as ‘votes’), with this simple “1 if you vote correctly, 0 otherwise” utility function, for simplicity of
presentation. Indeed, our main computational result, Theorem and its extensions in Section
admit a trivial generalization to the case of a general finite action space A and a general
common utility function U : A x § — R. Section [5] includes a precise description of why this is the
case.

A natural objection to such a model of behavior is that the agents should want to maximize
the discounted sum of their future utilities, instead of making the myopic optimal choice. Gale
and Kariv [I3] deal with this by assuming a continuum of agents at each node, so that no one of
them can hope to influence the future by their choice of votes. We can do the same here: Then
{oi(t)} and {F}} form a weak perfect Bayesian equilibrium (cf. [I3, Definition 1]) for the right
utility function (see above).

Rosenberg, Solan and Vieille[25] consider a model with fully rational agents -one per node-
maximizing the discounted sum of payoffs. In this setting strategic behavior arises, and so they
study the properties of the model’s Nash equilibria. They extend to this model many agreement

8We choose to use “vote” rather than the more usual “act” since, in this simplified model, the set of actions and
the set of states of the world are identical, so choosing an action is equivalent to picking a possible state of the world
as a guess for the true s.



results (e.g., those of Gale and Kariv [I3], Parikh and Krasucki [23] and Sebenius and Geanako-
plos [26]) that were previously known to apply to myopic agents. Our results apply only to the
myopic model, which can be thought of as a stepping stone towards the strategic model, being a
special case corresponding to discount factor 0.

2.2 Scaling regime

A major objective of this work is to examine whether the computations required of agents in this
model of Bayesian social learning can be efficiently performed. In defining a problem of efficient
computability, it is important to distinguish between parameters that are ‘fixed’ and parameters
that ‘scale’; also termed the scaling regime. The goal, then, is to obtain a reasonably slow growth
in computational effort needed as the scaling parameters become larger, while treating the fixed
parameters as constants. We treat the cardinalities of the sets S, A and X" as ﬁxedﬂ whereas the
scaling parameters are the number of agents n = |V, and the number of iterations ¢. Later, in
Section [3], we argue that since agents are trying to learn s, an alternative scaling parameter to ¢ is
1/e, where € > 0 is the desired probability of error. We will be interested in how the computational
effort increases as n grows, and as t or 1/e grow. Such a scaling regime is of much interest with
the emergence of massive online networks, where non-expert agents interact on a variety of issues,
and individual agents are expected to have limited private information, and typically choose from
a (relatively) small set of available actions.

Our choice of scaling variables is in contrast, for instance, to the work of Aaronson on the
complexity of agreement [I]. Aaronson focuses on the case of two agents, and allows the set of
possible private signals to grow, aiming to reach agreement with minimum communication and
computational cost. In our case, the objective must clearly be the computational cost, since the
‘protocol’ is defined by the model itself, leading to a fixed communication cost.

2.3 Comparison with other models

The model presented above is a special case of the Gale-Kariv model [13], which we refer to as the
GK model henceforth.

In the GK model there is an all-encompassing ‘state of nature’ w € €2, the agents have a set of
possible actions A, and the utility of the actions is a general function U : A x 2 — R. The utility
functions of all agents are the same. The agents receive general private signals (z1(w), ..., zy(w)).

We specialize the GK model as follows:

e We reduce w to (z1,...,xy, s), where x; € X is agent ¢’s private signal and s belongs to a given
(finite) set S. We restrict the utility function to depend only on s and a, i.e., U : AxS — R.
In particular, U does not depend directly on the x;’s.

e We demand that the x;’s be conditionally independent of each other, given s.
e We demand that S, X and A be finite sets with bounded cardinalities.

Our choice of a ‘state of the world’ s and conditionally independent private signals, with a
utility function dependent only on s and a, is typical in herd behavior models (e.g., Banerjee [7]
Bikhchandani, Hirshleifer and Welch [§], Smith and Sgrensen [27]). It is also the basis of the model
of boundedly-rational agents on social networks studied by Bala and Goyal [5]. Nevertheless it is
important to note that our first and second assumptions represents an important specialization of
the GK model. The third assumption corresponds to our choice of scaling regime (cf. Section [2.2)).

9Most of this work also treats the maximum degree d of the network as a fixed parameter.



Our assumptions play a crucial role in the efficient approach we develop to enable the computa-
tion of Bayesian posteriors. As discussed above, we allow the number of agents n to scale. Hence,
one might expect a general utility function that depends on all private signals to cause a com-
putational burden that grows exponentially in n, just to enumerate the different utility functions
possible. Our assumption 1 above eliminates this difficulty. Similarly, dependent private signals
might lead to the problem of summing over exponentially many different possibilities.

While we know of no formal computational hardness results for Bayesian calculations on social
networks, we conjecture that the removal of any of the first two assumptions, or the consideration
of general graphs (i.e., not tree or tree-like graphs), makes the agents’ calculations #P hard. A
proof of this conjecture would be a natural complement to this work.

3 Main results

We make use of the following notations:

e For positive valued functions f1, f2, we write f1(2) = O(f2(2)) or f1(2) € O(f2(2)) as z — oo,
if there exist C' < oo and zp < oo such that fi(z) < Cfa(z) for all z > 2.

e For positive valued functions fi, fao, we write f1(z) = Q(f2(2)) or fi(2) € Q(f2(2)) as z — oo,
if there exist C' > 0 and zp < oo such that fi(z) > Cfa(z) for all z > z.

The qualifier “as z — o0” is often omitted for brevity. In this work, z corresponds to the scaling
variables n, t or 1/e (or combinations of these, e.g., in O(min(n,td)) the scaling parameter is
min(n, td)). The constant C' may depend on fixed variables like |S|, |X|, and the maximum degree
d. We adopt the convention that C' should not depend on the network G. We remark that O(-) and
() are the only asymptotic notations that we use. For instance, w is not used as an asymptotic
notation.

3.1 Efficient computation

To the best of our knowledge, the literature (e.g., [13} 25, 22]) does not contain an explicit descrip-
tion of an algorithm to compute the actions chosen by agents in our model. However, it seems that
a dynamic programming algorithm that performs this computation is well known. The proposition
below states the computational complexity of this algorithm.

Proposition 3.1. On any graph G, there is a dynamic programming (DP) based algorithm that
allows agents to compute their actions up to time t with computational effort tQO(min(”v(d_l)t)),
where d is the mazimum degree of the graph.

The algorithm leading to Proposition is described in Section This proposition provides
the baseline or benchmark that we compare our other algorithmic results to. In particular, we do
not consider this algorithm a major contribution of this work.

A key advantage of the DP algorithm is that it works for any graph G. The disadvantage,
of course, is that the computational effort required grows doubly exponentially in the number of
iterations t.

Our main result concerns the computational effort needed when the graph G is a tree[ﬂ We
show that computational effort exponentially lower than that of the naive DP suffices in this case.

10A tree graph, in this work, refers to a graph that contains no loops. This is sometimes called a ‘forest’ in the
literature.



Theorem 3.2. In a tree graph G with mazimum degree d, each agent can calculate her actions up
min(n,td))

to time t with computational effort t20( .

The algorithm we use employs a technique called the dynamic cavity method [I7], previously
used only in analytical contexts. A full description of the algorithm and analysis leading to Theorem
3.2 is described in Section [l

An apparent issue is that the computational effort required is exponential in ¢; typically, ex-
ponentially growing effort is considered as large. However, in this case, we expect the number
of iterations t to be typically quite small, for two reasons: (1) In many settings, agents appear
to converge to the ‘right’ answer in a very small number of iterations [13]. In Section below,
we argue that if € is the desired probability of error, then the number of rounds required should
be only O(loglog(1/¢)), leading to computational effort of only polylog(1/e). Having obtained an
approximately correct estimate, the agents would have little incentive to continue observing their
neighbors actions and updating their beliefsﬂ (2) In many situations we would like to model,
we might expect only a small number (e.g., single digit) number of iterative updates to occur,
irrespective of network size etc. For instance, voters may discuss an upcoming election with each
other over a short period of time, ending on the election day when ballots are cast.

3.2 Convergence

Since an agent gains information at each round, and since she is Bayesian, then the probability that
she votes correctly is non-decreasing in ¢, the number of rounds. We say that the agent converges if
this probability converges to one, or equivalently if the probability that the agent votes incorrectly
converges to zer

We say that there is doubly exponential convergence to the state of the world s if the maximum
single node error probability max;cy P [0;(t) # s] decays with round number ¢ as

max P [o(t) # 5] = exp (— Qb)) , (1)
1€
where b > 1 is some constant.

The following is an immediate corollary of Theorem

Corollary 3.3. Consider iterative Bayesian learning on a tree of with mazimum degree d. If we
have doubly exponential convergence to s, then computational effort that is polynomial in log(1/e)
(i.e., polylogarithmic in 1/¢€) suffices to achieve error probability P [o;(t) # s| < € for alli in V.

Note that if weaken our assumption to doubly exponential convergence in only a subset V, C V
of nodes, i.e., max;ey, P[o;(t) # s| = exp ( - Q(bt)), we still obtain a similar result with nodes in
V. efficiently learning s.

Remark 3.4. If computational effort grows only polylogarithmically in an approximation parameter
(like € here), this is typically considered as very efficient. FEven poly(1/e) computational effort is
considered reasonably efficient, with the corresponding scheme being called a “fully polynomial time
approrimation scheme”.

We are handicapped by the fact that very little in known rigorously about convergence of
iterative Bayesian learning in this sense (cf. questions and in Section . Nevertheless, we

Hhus, 1 /€ serves as an alternative scaling parameter to t.
12Note that this notion of ‘convergence’ differs greatly from the ‘agreement on actions’ sense in which the term is
sometimes used.



provide the evidence for doubly exponential convergence on trees: We study a situation with two
possible states of the world and two possible private signal values. First, on a regular directed tree
we show that except for the case of very noisy signals, we have doubly exponential convergence if
the degree is at least five. Second, we state a conjecture and show that it implies doubly exponential
convergence of iterative Bayesian learning also on undirected trees. We provide numerical evidence
in support of our conjecture.

3.2.1 Directed trees

We consider an infinite directed d-ary tree. By this we mean a tree graph where each node i has
one ‘parent’ who observes ¢ and d ‘children’ whom 7 observes, but who do not observe i. Learning
in such a tree is much easier to analyze (than in an undirected tree) because the trajectories of the
d children are uncorrelated conditioned on s.

Proposition 3.5. Consider a directed d-ary tree, binary s ~ Bernoulli(1/2), and binary private
signals that are independent identically distributed given s, with P[z; #s] = 1 — 0§ for some § €
(0,1/2). For any symmetric tie breaking rule (e.g., “follow your private signal”), we have

Ploi(t) # 5] = exp [~ ((4/2)") ]. (2)

Proposition [3.5] is proved in Section [6]

3.2.2 Bayesian vs. ‘majority’ updates

We conjecture that iterative Bayesian learning leads to lower error probabilities (in the weak sense)
than a very simple alternative update rule we call ‘majority dynamics’[I7]. Under this rule, the
agents adopt the action taken by the majority of their neighbors in the previous iteration (this is
made precise in Definition . Our conjecture seems natural since the iterative Bayesian update
rule chooses the vote in each round that (myopically) minimizes the error probability. We use ;(t)
to denote votes under the majority dynamics.

Conjecture 3.6. Consider binary s ~ Bernoulli(1/2), and binary private signals that are indepen-
dent identically distributed given s, with P[z; # s] =1 — 0 for some § € (0,1/2). Let the majority
dynamics (cf. Deﬁnition be initialized with the private signals, i.e., 5;(0) = x; for alli € V.
Then on any infinite reqular tree, for all t > 0, we have

Ploi(t) # s] <P[oi(t) # s - 3)

In words, the error probability under iterative Bayesian learning is no larger than the error proba-
bility under majority dynamics, after the same number of iterations.

In Section [6] we show doubly exponential convergence for majority dynamics on regular trees:

Theorem 3.7. Consider binary s ~ Bernoulli(1/2), and binary initial votes 7;(0) that are inde-
pendent identically distributed given s, with P[0;(0) #s] = 1 — 9§ for some § € (0,1/2). Let i be
any node in an (undirected) d reqular tree for d > 5. Then, under the majority dynamics,

P[5,(t) # 5] = exp [f QO <(%(d— 2))t) }

d—

when 6 < (2e(d —1)/(d —2)) a-1.

»



Round | Bayesian Majority

0.15 0.15
2.66119-1072 | 2.66119-10~2
7.61832-10~* | 1.67525-1073
2.83839-10~7 | 8.37462 106
1.41065 - 10712 | 2.48525 - 1010

AW~ O

Table 1: Error probability on a regular tree with d = 5 and P [x; # s] = 0.15, for (i) Bayesian and (ii)
majority updates. The agents break ties by picking their original private signals.

Thus, if Conjecture [3.6] holds:

e We have doubly exponential convergence for iterative Bayesian learning on regular trees with
d > 5, implying that for any ¢ > 0, an error probability € can be achieved in O(loglog(1/€))
iterations with iterative Bayesian learning.

e Combining with Corollary , we see that the computational effort that is polylogarithmic
in (1/€) suffices to achieve error probability 1/e.

This compares favorably with the quasi-poly(1/e€) (i.e., exp (polylog(l / e))) upper bound on
computational effort that we can derive by combining Conjecture [3.6] and the naive dynamic pro-
gram described in Section[dl Indeed, based on recent results on subexponential decay of error prob-
ability with the number of private signals being aggregated [18], it would be natural to conjecture
that the number of iterations T needed to obtain an error probability of € obeys (d—1)T > C'log(1/e)
for any C' < oo, for € small enough. This would then imply that the required computational effort
using the naive DP on a regular tree of degree d grows faster than any polynomial in 1/e.

Since we are unable to prove our conjecture, we instead provide numerical evidence for it in
Table Further numerical results are presented in Section [7], along with a discussion of the
difficulties in proving Conjecture All computations leading to our numerical results are exact
(modulo finite precision arithmetic), and were performed using the dynamic cavity equations. The
results are all consistent with our conjecture over different values of d and P [x; # s].

We would like to emphasize that several of the error probability values could be feasibly com-
puted only because of our new efficient approach to computing the decision functions employed
by the nodes. For instance, with d = 5, computing the decision function at iteration 3 using the
dynamic program (cf. Proposition and Section {4 would require enumeration over 280 ~ 1024
possibilities, which is infeasible even on state-of-the-art supercomputers. With our approach, we
are able to compute the decision function at iteration 3 and even at iteration 4, on a desktop
machine. This aggregates information from the ~ 400 nodes within 4 hops of a given node.

Figure [1] plots decay of error probabilities in regular trees for iterative Bayesian learning with
P [x; # s] = 0.3, where the agents break ties by picking their original private signals. Each of the
curves (for different values of d) in the plot of log(—logP [o;(t) # s]) vs. t appear to be bounded
below by straight lines with positive slope, suggesting doubly exponential decay of error probabilities
with .

The empirical rapidity of convergence, particularly for d = 5,7, is noteworthy.

4 A Simple Algorithm: Proof of Proposition 3.1

A sign of the complexity of evaluating the Bayesian decision function g!(z;, agzl), is that even the

brute-force solution approach to it is not trivial. We therefore describe it here.
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Figure 1: Error probability decay on regular trees for iterative Bayesian learning, with P [x; # s] =
0.3 (cf. Section . The data used to generate this figure is presented in Table .

One way of thinking of the agents’ calculation is to imagine that they keep a long list of all
the possible combinations of private signals of all the other agents, and at each iteration cross
out entries that are inconsistent with the signals that they’ve observed from their neighbors up to
that point. Then, they calculate the probabilities of the different possible states of the world by
summing over the entries that have yet to be crossed out.

This may not be as simple as it seems. To understand which private signal vectors are ruled out
by the observed actions of neighbors, an agent “simulates” the network for every possible private
signal vector: Each agent calculates the function g! for every other agent i and every possible set
of observations by i. We formalize this below.

Let z € X™ be the vector of private signals (z;);cy. The trajectory of i, denoted by oy, is
a deterministic function of x. Assume then that up to time ¢ — 1 each agent has calculated the
trajectory Uffl(g) for all possible private signal vectors z and all agents 7. This is trivial for
t—1=0.

We say that y € X™ is feasible for ¢ at time ¢ if z; = y; and o}, = 0}, (y). We denote this set of
feasible private signal vectors by It (z;,0h;) € X™. To calculate of(z), one observe that for all 4, z;
and 03171, we have

P [s|.7-"ﬂ x P[s]P [xi,crgl_.1|s]

=Pls] ),  Plz=yls]

vel; ™ (v )

and

Git(zi, Ug;l) = argmax P [s|]:f]
SES

by definition. We use the standard abusive notation P [z;] instead of P [z; = y;], P [Jﬂ instead of

P [0§ = wﬂ, etc.

It is easy to verify that using the equations above, the ‘simulation’ can be advanced from ¢ — 1
to ¢t with additional computational effort O(n|X|™). Thus, the calculation of o!(z) for all i and
x requires total effort O(tn|X|™). This leads to an upper bound of t20(™) for this method. Note

that up to time ¢ an agent need only consider agents at distance at most ¢, so on a graph with
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maximum degree d, we obtain a bound of 20((d=1)") " This improves the bound above for ‘large’
graphs, i.e., graphs for which n > (d —1)! for relevant values of t. Thus, we obtain the result stated
in Proposition [3:1]

We call this algorithm ‘the naive dynamic program’.

5 The Dynamic Cavity Algorithm on Trees

In this section we develop the dynamic cavity algorithm leading to Theorem We present the
core construction and key technical lemmas in Section In Section we show how this leads
to an efficient algorithm for the Bayesian computations on tree graphs, and prove Theorem
We extend our results in various directions in Section

Assume in this section that the graph G is a tree with finite degree nodes. For j € 0i, let
Gj—i = (Vj>i, Ej—i) denote the connected component containing node j in the graph G with the
edge (i,j) removed. That is, G;_; is j’s subtree when G is rooted at 1.

5.1 The Dynamic Cavity Method

We consider a modified process where agent ¢ is replaced by an inert agent who takes a fixed
sequence of actions 7; = (73(0),7;(1),...), and the true state of the world is assumed to be some
fizred s. Furthermore, this ‘fixing’ goes unnoticed by the agents (except i, who is inert anyway)
who perform their calculations assuming that ¢ is her regular Bayesian self, and that s was drawn
randomly according to P[s]. We denote by Q [A||7;, s] the probability of event A in this modified
process.

Remark 5.1. We emphasize that the modified process with an ‘inert’ agent is a theoretical con-
struct we use to derive an efficient implementation for the iterative Bayesian decision rules. Our
algorithm does not involve actual replacement of nodes in the network.

This modified process is easier to analyze, as the processes on each of the subtrees V;_,; for
j € 0i are independent: Recall that private signals are independent conditioned on s, and the inert
agent ensures that the subtrees stay independent of each other. This is formalized in the following
claim, which is immediate to see:

Claim 5.2. For anyi € V, s € S and any trajectory 7;, we have

Q[ogil|7irs] = [T @loj]l7. 5] (4)
j€di
(Since 0;1 is unaffected by 7;(t') for all ¢’ > ¢, we only need to specify 7!, and not the entire 7;.)
Now, it might so happen that for some number of steps the ‘inert’ agent behaves exactly
as may be expected of a rational player. More precisely, given agz_.l, it may be the case that
¢

t = g! (xi,atazl). This event provides the connection between the modified process and the

original process, and is the inspiration for the following theorem.

Theorem 5.3. Consider any i € V, s € §, t € N, trajectory 7; and 03271. For any x; such that
P [x;]s] > 0, we have

P [of; !

s, mi] 1(r} = gi (21,05 ")) = Qlog; |70 8] 1 (v = gi (wi 05,7)) - (5)
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Proof. We couple the original process, after choosing s, to the modified processes by setting the
private signals to be identical in both.

Now, clearly if it so happens that 77 = g! (xi,agl_.l) then the two processes will be identical
up to time ¢. Hence the probabilities of events measurable up to time ¢ will be identical when
multiplied by 1 (Tf =g! (a:z, ng 1)), and the theorem follows. O

Using Egs. and , we can easily write the posterior on s computed by node ¢ at time ¢, in
terms of the probabilities Q[-||-]:

[ |]:t] x P[s]P [xz,aal” ]
P[s]P[xi|s] P [0 |5, 4]
P [s] P [xi]s] HQ[t 1‘ ,s] (6)
JEODI
(Recall that o} ' is a deterministic function of (z;,05; ). Also, note that if P [z;]s] = 0, we simply
obtain PP [s|F}] = 0. Eq. (6)) deals with the non—trwlal case P [x;]s] > 0.)

Remark 5.4. A naive (and incorrect) method to estimate the posterior P [s[fﬂ would be to treat
the trajectories of the neighbors and x; as being independent conditioned on s, leading to the estimate
7 t—1
P [5| 7] o P[s] P [aifs] [Tje0i P | 7}
estimate that is exact on trees. In other words, it provides the right way to ‘combine’ information
from neighbors to compute the Bayesian posterior on s.

s} for posterior belief. Eq. @ gives us a variation on this

The decision function, defined as before, then follows from the posterior:

git(wi, 0 ') = arg rgax]P’ [s|F] - (7)
se

As mentioned earlier, we assume there is a deterministic tie breaking rule.

Remark 5.5. Suppose, instead, that the action set A is distinct from S, and the agents have some
common utility function U : A x S — R. Eq. @ changes to

9i t(xzao'az ) = arg maXZ]P) ‘]:t] (av S): (8)
a€A SES

and all results in this section remain unchanged.
The naive DP in Section |Z| admits a similar trivial extension.

We are left with the task of calculating Q[-||-]. The following theorem is the heart of the
dynamic cavity method and allows us to perform this calculation:

Theorem 5.6. For anyi €V, j€ i, s€S, teN, 7} and a§~, we have

el = X Y Pl o) =g (w (o))

d—1

JIeor| e s (9)

=1

where the neighbors of node j are 05 = {i,1,2,...,d —1}.

13Thus, the logarithm of this estimated belief is a linear combination of information from neighbors. This has
motivated some of the heuristic updates rules studied in the literature [10] [IT].
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We mention without proof that the recursion easily generalizes to the case of a random tie-
breaking rule; it is a matter of replacing the expression 1 {ag» =-.. ] with P [0;- =-.. -], where this

probability is over the randomness of the rule. Eq. @ continues to be valid in this case.
The following proof is similar to the proof of Lemma 2.1 in [I7], where the dynamic cavity
method is introduced and applied to a different process.

Proof. In the modified process, the events in the different branches that ¢ sees are independent.
We therefore consider Gj_,; only, and view it as a tree rooted at j. Also, for convenience we define
af = Tf; note that the random variable af does not exist in the modified process, as i’s trajectory
is fixed to ;.
Let z be the vector of private signals of j and all the vertices up to a depth ¢ in Gj_;; (call this
set of vertices V' ,;). For each I € {1,...,d — 1}, let 2; be the vector of private signals of Vl’:]l
Thus, z = (25,21, Zg, ..., Zg_1)-
The trajectory 05- is a function -deterministic, by our assumption- of z and /. We shall denote
this function by Fj_,; and write (7;. = th _;(z,7}). This function is uniquely determined by the
update rules gf (xl, ng_l) forl € Vj';i.
We have therefore

Qo = N|rss] = DO PLels] 1OV = FjLi(z, 7)) (10)

z

We now analyze each of the terms appearing in this sum. Since the private signals are independent
conditioned on s, we have

Pla|s] = Plaj|s] Pz |s] P [zals] ... P [zg_1]s] - (11)

The function F} ;(---) can be decomposed as follows:

LN = Flie,) = > 1N =glwof)) [T1(e ! = ASj@a ™). (12)
gt—1 gt—1 =1
1 d—1

Using Eqgs. and in Eq. and separating terms that depend only on z;, we get

Qof = N||7,s] = Z ZIP’[J:ﬂS]l()\t:g;(xj,ag;l) .

I Pluls) 1 (0! = A b A7)

=1 z

The recursion follows immediately by identifying that the product over [ in fact has argument
Q [afleaﬁ-fl, s}. O

5.2 The Agents’ Calculations

We now have in place all we need to perform the agents’ calculations. At time ¢ = 0 these
calculations are trivial. Assume then that up to time t each agent has calculated the following
quantities:

1. Q {Uﬁfl‘

P S}, for all s € S, for all 4,5 € V such that j € 9, and for all 7/~ and J;t'il‘
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2. gt(x;, 0 ") for all 4, z; and of; .

Note that these can be calculated without making any observations — only knowledge of the graph
G, P[s] and P [z|s] is needed.
At time t + 1 each agent makes the following calculations:

1. Q {aﬁ’

from the previous iteration.

Tz-t, s} for all s, 1, j, a}, Tz-t. These can be calculated using Eq. @, given the quantities

2. gf“(aji, agi) for all 4, z; and crgi. These can be calculated using Eqs. @ and and the the
e s]
Since agent j calculates gf“ for all 4, then she, in particular, calculates g}“. This allows her

to choose the (myopic) Bayes optimal action in rounds up to ¢ + 1, based on her neighbors’ past
actions. A simple calculation yields the following lemma.

newly calculated Q [U;-

Lemma 5.7. In a tree graph G with maximum degree d, the agents can calculate their actions up
to time t with computational effort n20(t).

In fact, each agent does not need to perform calculations for the entire graph. It suffices for
node i to calculate quantities up to time ¢’ for nodes at distance ¢t — ' from node i (there are at
most (d— 1)t*tl such nodes). A short calculation yields an improved bound on computational effort,
stated in Theorem

Proof of Theorem [3.3. Consider an agent j, who wants to determine her own decision function up
to round t, i.e., she wants to determine gg( -, ). The computation is performed in ¢ steps, that we
number 0, 1, ..., t — 1. Step 0 involves the following: (i) Evaluate ¢{(z;) = arg max,.g P [s|z;] for
all 7 at a distance at most ¢ from j. (ii) Evaluate Q [0’?‘ ‘7‘,8 , s] for all k£ at distance at most ¢ — 1
from j, for all ¢ € Ok, and for all a?, T]g, s, using Eq. @D

For any 1 <t/ <t —1, step t — t/ proceeds as follows. Consider any agent ¢ at distance at

most ¢ > 1 from j. Suppose that we have already computed Q {af_t/_l‘ Tf_t,_1,81| for all such

i, for all [ € 0i, and for all possible of*tlfl,Tf*tlfl,s. Then we can use Eqgs. @ and to
t—t'—1

compute gf_t/ (4, 0, ) for all possible z;, O'(t%—»t/_l. Using these values, for any k at a distance

t' — 1 from j, we can compute Q [Jf_t/HT,i_t/, s} for all ¢ € 0k, for all af_t/,rli_t,, s, using Eq. @D
The computational effort involved is bounded by C(d — 1)¥'|S|*¢—#)+1| x| for the computation of
gfft/( -, +)’s and bounded by C(d—1)!'|S|@DE+1)| x| for the computation of Q [afftl
Here d is maximum degree, and C' = C(d) < oo is a constant. Thus, step ¢ — ¢’ requires effort

bounded by 2¢? for some €’ = C’(d,|S|,|X|) < co. This bound also holds for step 0. Thus, the
overall computational effort is bounded by 20"td — 90(td)

Y
T]i t,s} ’s.

O]

5.3 Dynamic Cavity Algorithm: Extensions

Our algorithm admits several extensions that we explore in this section: Section discusses
random graphs, Section [5.3.2] relaxes the assumption that the entire graph is common knowledge
and Section allows nodes/edges to be inactive in some rounds.

But first we mention some straightforward generalizations:

It is easy to see that dynamic cavity recursion (Theorem does not depend on any special
properties of the Bayesian update rule. The decision rule g;; : X x S 9ilt S can be arbitrary.
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Thus, if agent ¢ wants to perform a Bayesian update, he can do so (exactly) using our approach
even if his neighbor, agent j, is using some other update rule@

Remark 5.8. The dynamic cavity recursion can be used to enable computations of agents even if
some of them are using arbitrary update rules (provided the rules are common knowledge).

Our algorithm is easily modified for the case of a general finite action set A that need not be
the same as S, associated with a payoff function U : A x § — R, as described in Remark In
fact, the action set and payoff function can each be player dependent (A;, U; respectively: Eq.
admits a trivial generalization), provided these are common knowledge.

We already mentioned that there is a simple generalization to the case of random tie breaking
rules.

Instead of having only undirected edges (corresponding to bidirectional observations), we can
allow a subset of the edges of the tree to be directed. In this case, the same algorithm works with
suitably defined neighborhood sets 9i. In other words, our result holds for the class of directed
graphs lacking cycles of length greater than two (length two cycles are simply undirected edges).

Agents may receive private signals in rounds later than round 0. This can be incorporated into
our computational approach provided that conditioned on s, the private signals are independent for
different agents and across time. Let z;; be the private signal received by agent ¢ just before round
t. Then in Eq. @, P [z;]s] is replaced by Hi/:o P [a:w s], and there is an analogous replacement
for P[z|s] in Eq. (9).

The computations of agent ¢ up to round t only depend on a ‘ball’ of radius ¢ around node i,
i.e., the neighborhood of node i up to depth ¢. For our algorithm to work at node i up to round ¢,
we only need the ball of radius ¢ around node i to be a tree.

It should also be possible to use our dynamic cavity approach to enable efficient Bayesian
computations in a social experimentation setting (see, e.g., [12, 5]), where (noisy) payoffs are
observed in each round by agents and their neighbors. However, we do not pursue this extension
here, since it would require us to introduce a new model.

5.3.1 Random graphs

Consider a random graph on n nodes drawn from the configuration mode]E| with a given degree
distribution. It is well known that such graphs are locally tree-like with high probability(see, e.g.
[3]). More formally, for any ¢t < oo, we have

lim P [Bj is a tree.] = 1. (13)
Since node calculations up to time ¢ depend only on Bf, it follows that with high probability

(w.h.p.), for an arbitrarily selected node, the tree calculations suffice for any constant number of
iterations.

5.3.2 Learning without Knowledge of the Graph

Here we consider the situation where nodes do not know the actual graph G, but know some
distribution over possibilities for GG. This is potentially a more realistic model; the assumption the

Such settings have been proposed, for instance, in [22], where the network consists of a mixture of Bayesian and
non-Bayesian agents.

1511 the configuration model, one first assigns a degree to each node, draws the appropriate number of ‘half-edges’
and then chooses a uniformly random pairing between them. One can further specify that a graph constructed thus
is ‘rejected’ if it contains double edges or self-loops; this does not change any of the basic properties, e.g., the local
description, of the ensemble.
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graph structure is common knowledge may be considered a weakness of the model of Gale and
Kariv. We address this issue here, showing that our algorithm can be modified to allow Bayesian
estimation in this case as well.

Let G = G,, be a random graph of n nodes constructed according to the configuration model
for a given (node perspective degree) distribution. Denote the degree distribution by py, so that
pv(d) = probability that a randomly selected node has degree d.

Now, in this ensemble, the local neighborhood up to distance D of an arbitrary node v with
fixed degree d,, converges in distribution as n — oo to the following (‘local weak convergence’, see
[3]): Each of the neighbors of node v has a degree drawn independently according to the ‘edge
perspective’ degree distribution pg, defined by:

dpv (d)
Darendpv(d')

Further, each of the neighbors of the neighbors (except v itself) again have a degree drawn
independently according to pg(d), and so on up to depth D. Call the resulting distribution over
trees 7;5 .

Now suppose that agents are, in fact, connected in a graph drawn from the ensemble G,, with
degree distribution py, independent of the state of the world s and the private signals {x;}. Suppose
that each node u knows the distribution py and its own degree d,, but does not know anything
else about Gnm Further, suppose that this is common knowledge. Now in the limit n — oo, an
exact Bayesian calculation for a node v up to time ¢ depends on py via 7;1tv. Since nodes know only
their own degree, there are only A different ‘types’ of nodes, where A is the size of the support of
pe(d). There is one type for each degree. This actually makes computations slightly simpler than
in an arbitrary known graph.

Fix state s. Take an arbitrary agent i. Replace it with an ‘inert’ agent following the vote trajec-
tory 7;. Now fix some 0i (ensure py (|0i|) > 0). Choose arbitrary j € 0i. Define Q [J;. = w} 7t s]

as the probability of seeing trajectory a§ = w§~ at node j in this setting. This probability is over

pE(d) =

the graph realization (given 0i) and over the private signals. Note here that Q |:0'§- = w;ﬁ i, s] 18
the same for any i, 01 cmdj € 0i.
Egs. @ and (7)) continue to hold w.h. pm for the same reasons as before.
The dynamlc cav1ty recursion, earlier given by Eq. @D, becomes
1 1
Qfllres] =3 pp@ 37 S Plnill 1o} = f (o (k)]
deN LotTl oz
1 d—1
d—1
: HQ [O‘;ilHO';il,S] . (14)
I=1

in the limit n — oo, due to local weak convergence (see above). We have written the recursion
assuming the neighbors of j are named according to 9j\i = {1,2,...,d — 1}.

We comment that there is a straightforward generalization to the case of a multi-type configu-
ration model with a finite number of types. Nodes may or may not be aware of the type of each
of their neighbors (both cases can be handled). For instance, here is a simple example with two
types: There are ‘red’ agents and ‘blue’ agents, and each ‘red’” agent is connected to 3 ‘blue’ agents,

160ther ‘knowledge’ assumptions can be similarly handled, for instance where a node knows its own degree, the
degree of its neighbors and py .
1"We need the ball of radius ¢ around i to be a tree.
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whereas each ‘blue’ agent is connected to either 5 or 6 ‘red’ agents with equal likelihood. In this
case the degree distribution itself ensures that nodes know the type of their neighbors as being the
opposite of their own type. Multi-type configuration models are of interest since they allow for a
rich variety ‘social connection’ patterns.

Remark 5.9. Our algorithm suggests a heuristic update rule that can apply to general graphs.
Consider any random graph model with some degree distribution that is common knowledge. The
model can include many short loops but suppose agents perform their computations as though their
neighborhood (beyond immediate neighbors) is a tree drawn according to the edge perspective degree
distribution, and this is common knowledge. The computations and updates employed are then
exactly as described above.

We discuss this further in Section [R.2

5.3.3 Observing random subsets of neighbors

We may not interact with each of our friends every day. Suppose that for each edge e, there is a
probability p. that the edge will be ‘active’ in any particular iteration, independent of everything
else. Let ac(t) € {*,a}, be an indicator variable for whether edge e was active at time ¢ (a denotes
‘active’). Now, the observation by node i of node j belongs to an extended set that includes an
additional symbol * corresponding to the edge being inactive. Thus, there are (|S|+ 1)!*! possible
observed trajectories up to time ¢t. Our algorithm can be easily adapted for this case. The modified
‘inert’ agent process involves fixing state of the world s, trajectory 7; and also (a;;(t));jea; for all
times t. The form of posterior on the state of the world, Eq. @, remains unchanged. The cavity

recursion Eq. @ now includes a summation over the possibilities for (aﬁ_l, ey afi__ll). The overall

complexity remains 204,

The case where node v becomes inactive with some probability p, in an iteration, independent
of everything else, can also be handled similarly. A suitable formulation can also be obtained
when both the above situations are combined, so that both nodes and edges may be inactive in an

iteration.

6 Proofs of convergence results

6.1 Directed trees: Proof of Proposition (3.5

Lemma 6.1. Consider the setting of Proposition|[3.5. The error probability at any node i at time
t is bounded as
P [O'Z(t) 7é S] S 5,5,

where §g = § and we have a recursive definition
0y = P [Binomial(d, dy—1) > d/2] . (15)

Proof of Lemma[6.1. We proceed by induction on time ¢. Clearly, the error probability is bounded
above by g at t = 0. Let S = X = {—1,+1} for convenience (we already assumed s and z; are
binary). Note that, by symmetry, the error probability P [o;(¢) # s] does not depend on s or on i.
Suppose, P [o;(t) # s] < §;. Consider a node j making a decision at time ¢ + 1. Let the children of
j be1,2,...,d. Define ¢;, the opinion of the majority of the children, by

d
oj(t+1) =sgn <Z Ul(t)> ,

=1
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where sgn(0) is arbitrarily assigned the value —1 or +1. The ‘error-or-not’ variables [o;(t) # s]
are independent identically distributed (i.i.d.), with P [oy(t) # s] < &; by the induction hypothesis.
Hence,

Plo;(t+1) # s] < P[Binomial(d, §;) > d/2] = 6441 . (16)

Since the agent j is Bayesian, she in fact uses the information (asj,a'i, . ,afi) to compute a
MAP estimate oj(t+ 1) of the true state of the world. Clearly, P[o;(t+ 1) # s] <P[o;(t+ 1) # s].
Using Eq. (L6)), it follows that P [oj(t + 1) # s] < &;11. Induction completes the proof. O

Proof of Proposition[3.5. For a symmetric tie breaking rule and 6 < 1/2, it is straightforward to
establish that §; = IP[o;(t) # s| is monotonic decreasing in ¢, and converges to 0. It follows (by an
argument similar to the one used in the proof of theorem below) that we have doubly exponential
convergence to the true state of the world:

—logP [oi(t) # s] € Q((d/2)").

implying that O(loglog(1/¢)) rounds suffice to reduce the error probability to below e. O

6.2 Majority dynamics: Proof of Theorem

In this section we study a very simple update rule, ‘majority dynamics’. We use o;(t) € {—1,+1}
to denote votes under the majority dynamics.

Definition 6.2. Under the majority dynamics, each agent i € V' chooses her vote in round t + 1
according to the majority of the votes of her neighbors in round t, i.e.

Gi(t+1) =sign | > 5(t)

jedi
Ties are broken by flipping an unbiased coin.

Let s € {—1,+1} be drawn from a uniform prior and nodes receive ‘private signals’ 7;(0) that
are correct with probability 1 — J, and independent conditioned on s. We consider an undirected
d regular tree. The analysis in this case is complicated (relative to the case of a directed tree) by
dependencies which have to be carefully handled. Our analytical approach here is again closely
related to the dynamic cavity method.

Lemma 6.3. Consider the setting in Theorem[3.7. Let i and j be adjacent nodes in the tree. Then

for all (57,5571 e {—1,+1}*

P[5i(t) = —115! 50 s = +1] <4 (17)
where &; is defined recursively by ég = 6, and
6; = P [Binomial(d — 1,8;—1) > d/2 — 1] (18)

Proof. We proceed by induction. Clearly Eq. holds for t = 0. Suppose Eq. holds for some
t. We want to show

P[oi(t+1) = —1|5},65, s = +1] < 41, (19)
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for all (5},5%) € {—1, +1}2(t+D),
Let l1,1l9,...,l3—1 be the other neighbors of node i (besides j). We will show that, in fact,

P [Gi(t +1) = -1[8,6%50 " ....50 s = +1} < Gpan s (20)
for all possible £ = (o, 3;, 3;;1, 31;2—1’ . ,Af;ll).

We reason as follows. Fix the state of the world s and the trajectories o and 3;.. Now this

induces correlations between the trajectories of the neighbors l1, ..., l4_1, caused by the requirement

of consistency with the majority rule at node ¢, but only up to time t — 1. If we further fix 3;:1,

then oy, (t) (and o, at all future times) is conditionally independent of (Efm,)m, St Thus, we
havd™]
PG, (t) = —1|¢ s =+1] = P [5,,,(t) = —1|5, 1,5, ', s = +1] ,
and therefore, using the induction hypothesis
Pl (t) = —1|& s = +1] < 6, (21)

for all m € {1,2,...,d — 1}. Also, the actions &y, (¢),...,0;, ,(t) are conditionally independent of
each other given £, s = +1. We have

oi(t+1) =sgu(o;(t) +o5,(t)+...+ 01, ,(t)),
with sgn(0) being assigned value —1 or +1 with equal probability. This yields
Ploi(t+1)=—1|& s =+1] < P[Binomial(d —1,6;) > d/2 — 1]

from Eq. and conditional independence of oy, (t),...,0;, ,(t). Thus, we obtain Eq. .
Eq. follows by summing over 3;;1, 8;;1, . ,5;;_11. O
Proof of Theorem [3.7. By applying the multiplicative version of the Chernoff bound@ to Eq.
we have that

6t+1 < e(d—2)/2—(d—1)5t (25t(d o 1)/(d - 2))(d—2)/2

—(d-1)

Dropping the term e % we obtain

=
Sie1 < (268(d — 1)/ (d — 2)) 3. (22)
This is a first order non-homogeneous linear recursion in log d;. If it were an equality it would
yield

log 0; = <log5 + 3— Z log[2e(d —1)/(d — 2)]) [3(d— 2)]t

B d—2
d—4

log[2e(d —1)/(d = 2)],

18 A alternate argument can be constructed using the modified process with an inert agent, mirroring the reasoning
used in the proof of Theorem

UPIX > 1+ nE[X]] < (ui’;‘;ﬂn)mx}. We substitute E [X] = 6;(d — 1) and 1 +n = (d/2 —1)/[6:(d — 1)].
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Round | Bayesian Majority

0 0.15 0.15

1 6.075 - 1072 6.075- 1072

2 1.57158 - 1072 | 2.95136 - 102

3 2.99170 - 103 | 1.59849 - 102

4 3.39853 - 10~* | 9.15458 - 103

5 2.72958 - 10~ | 5.46501 - 10~3

6 2.21981-107¢ | 3.35117-1073

Table 2: d =3, P[z; # s] =0.15
and so
~1ogd; € 2 ((3(d-2)"), (23)
as long as
d—2
—logd < 7 4log[2e(d— 1)/(d—2)].

O]

Theorem is non-trivial for d > 5. The upper limit of the ‘noise’ § for which it establishes
rapid convergence approaches (2¢)~! as d grows large (see also the discussion below for large d).

Convergence for large d

We present now a short informal discussion on the limit d — co. We can, in fact, use Lemma
to show convergence is doubly exponential for § < 1/2 — ¢/d for some ¢ < oo that does not
depend on d.

Here is a sketch of the argument. Suppose § = 1/2 — ¢;/d. Then, for all d > d; where d; < o,
there exists ¢y < oo such that P [Binomial(d — 1,8) > d/2 — 1] < 1/2 — ¢3/+v/d. This can be seen,
for instance, by coupling with the Binomial(d — 1,1/2) process and using an appropriate local
central limit theorem (e.g., see [I7, Theorem 4.4]). Thus, §; < 1/2 — c2/V/d. Further, cz can be
made arbitrarily large by choosing large enough ¢;. Next, with a simple application of the Azuma’s
inequality, we arrive at dy < c3 (where ¢3 — 0 as co — o0). Now, for small enough c3, we use the
Chernoff bound analysis in the proof of Theorem and obtain doubly exponential convergence.

7 Further numerical results and discussion on Conjecture

Table [2| together with Table [I] above, contrast the error probabilities of Bayesian updates with
those of majority updates. All cases exhibit lower error probabilities (in the weak sense) for the
Bayesian update, consistent with Conjecture |[3.6, Table [3| contains the data plotted in Figure
Also for these parameters, we found that the Bayesian updates showed lower error probabilities
than the majority updates (compare with Table .

The running time to generate these tables was less than a minute on a standard desktop machine.
We did not proceed with more rounds because of numerical instability issues which begin to appear
as error probabilities decrease.

We now discuss briefly the difficulties in proving Conjecture Order the possible private
signals by the implied likelihood ratio of s, with higher x; corresponding to s = +1 being more
likely. We say a learning rule with successive rounds of ‘voting’ is monotonic if the following
occurs: If some z leads to o;(t) = 1, then increasing x; in z for some j € V leaves 0;(t) unchanged.
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Round | d =3 d=35 d=17

0 0.30 0.30 0.30

1 0.216 0.16308 0.126036

2 0.134038 5.07053 - 10~2 | 1.1966 - 102
3 7.77755 - 1072 | 4.06495 - 1073 | 3.67884 1076
4 3.79502 - 1072 | 1.61786-107°

5 1.71209 - 102

6 5.73294 - 1073

7 1.59587 - 103

Table 3: Error probabilities for Bayesian agents with P [z; # s] = 0.3, for regular trees of different degrees
d. This data is displayed in Figure

Round | d =3 d=5 d="17

0 0.30 0.30 0.30

1 0.216 0.16308 0.126036

2 0.170489 | 0.0733673 0.0232861

3 0.146010 | 0.0215952 2.99165 - 104
4 0.130070 | 2.61093 - 10~3

5 0.119647

6 0.112267

7 0.107006

Table 4: Error probabilities for agents using majority updates with P[z; # s] = 0.3, for regular trees of
different degrees d.

One might expect most reasonable learning rules, including iterative Bayesian learning, to satisfy
monotonicity. For instance, there is a simple proof that the majority rule is monotonic [17].
However, it turns out that iterative Bayesian learning is not always monotoniﬂ It is not very
surprising, then, that it is hard to prove convergence of Bayesian learning to the ‘right’ answer,
even in simple settings. Controlling the rate of convergence, as in Conjecture is even harder.
Despite non-monotonicity, it is tempting to hope for a direct proof of Conjecture[3.6 by showing
inductively (in time) that iterative Bayesian learning is always at least as good majority dynam-
ics. The difficulty that arises here is that though iterative Bayesian learning minimizes the error
probability at a node, given the available information, this is not the case if we condition on the
state of the world. After conditioning on the state of the world, iterative Bayesian learning does
better than majority dynamics on some nodes, and worse on others. It is very hard to control the

difference between the two processes beyond a small number of iterations, making a direct proof of
Conjecture [3.6] difficult.

8 Discussion

We presented a new algorithmic approach that questions the belief that fully Bayesian computa-
tions for agents interacting on a social network are computationally intractable. The chief drawback
is that our approach does not seem amenable to graphs with short loops, though many real net-
works possess this feature. A significant open question suggested by our results is: What is the
‘computational boundary’ between networks where exact Bayesian calculations can be efficiently

20Elchanan Mossel and Omer Tamuz, private communication.
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performed, and networks where this is not possible? In particular, can graphs with a few short
loops be handled at some additional computational cost?

8.1 Relation to Aaronson’s work on the complexity of agreement

The work most closely related in spirit to the present one is that of Aaronson on the complexity of
agreement [I]. In that work, as in this one, the author started out aiming to establish complexity
theoretic ‘hardness’: “communication complexity might provide a fundamental reason for why
... people could agree to disagree .. .this was our conjecture when we began studying the topic”, but
instead discovered an efficient procedure to achieve the objective in question under some conditions.
We briefly describe Aaronson’s work next and compare it to our own.

Aaronson investigated the question of whether Aumann’s classic theorem on agreement [4] is
supported by an efficient procedure by which agents with a common prior can reach agreement. In
that setting, the ‘communication protocol’ itself is unspecified, and the objective is to formulate
an efficient communication protocol, along with an efficient computational procedure to implement
this protocol, so as to facilitate agreement between agents. The scaling variables chosen are the
number of bits n of private information, and the inverse ‘error probability’ 1/e. Aaronson shows
that agreement can be achieved after a ‘conversation’ of reasonable length (that does not depend
on n) in the case of two interacting agents, and also in the case of more than two agents on
a strongly connected network. Further, he shows that for two agents, the computational effort
required to adequately ‘simulate’ this conversation is again independent of n ([1] does not establish
a computational bound for networks of three or more agents). Given a desired error probability
€, the conversation length required grows as poly(1/¢), whereas the bound on computational effort
grows as exp(poly(1/e)).

There are several evident differences with the current work. First, the ‘communication protocol’
is specified implicitly by the model itself in our problem. Thus, the single objective for us is to
minimize computational effort. Second, our scaling regime is very different, in that we let the
number of nodes n grow large (whereas Aaronson focusses on the two agent case), but demand that
private signals of agents belong to a finite set. In other words, we study the effect of large network
size on computational difficulty, whereas Aaronson focusses on the effect of a large amount of private
information@ In terms of dependence of computational effort on ‘error probability’, our bound
of polylog(1/€) on computational effort (assuming Conjecture is doubly exponentially smaller
than the bound of exp(poly(1/¢)) obtained by Aaronson as evidence of ‘efficient computability 7]

In the spirit of Aaronson’s approach [I] to simulating a conversation between Bayesian agents
using limited computations, it may be possible to develop a Monte Carlo sampling based version of
the naive dynamic program (Section [4)) that is much more efficient. The chief additional difficulty
would be in handling the effects of network structure, since Aaronson only deals with the case of
two agents. This is an interesting direction of future study.

8.2 The Bayesian calculation on trees as a heuristic on general graphs

Our algorithm for trees, which allows exact posterior calculations, can also be used as a heuristic
on general loopy graphs (hereafter ‘our heuristic’), for instance in the case described in Remark
Our heuristic involves ‘belief” updates that are similar in some ways (cf. Remark and the foot-
note there) to previously suggested thumb rules for learning when agents are subject to ‘persuasion
bias’, e.g., [10, 11, [14]. DeMarzo, Vayanos, and Zwiebel [I1] present a detailed argument suggesting

M nterestingly the bounds obtained are independent of n in both works, for n large.
220f course, a direct comparison is somewhat unfair since the problems being addressed are quite different.
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the prevalence of persuasion bias in society, meaning that agents tend to ignore repetition in the
information they receive. There are multiple possible reasons for the repetition of information,
including: (i) the same neighbors’ actions may be repeatedly observed, (ii) the neighbors’ actions
are affected by past actions of the agent herself, (iii) there may be loops in the network, causing
dependence in the information received from different neighbors.

Simple heuristics such as majority rules do not correct for (ii), the effect of ones own action on
ones neighbors. Our heuristic takes both (i) and (ii) into account, but neglects the effects of loops.
In particular, it allows exact posterior computations on trees. Arguably, repetition of information
due to loops in the network may be the aspect that agents find most difficult to incorporate into
their computations. With this is mind, it seems that our heuristic or similar heuristic update rules
may be of interest to investigate on general graphs. They could capture the behavior of agents who
are rational in every respect except in accounting for loops in the network. Thus, our work may
suggest new directions to pursue in the context of understanding “... how the theory changes if
the bounded rationality takes a more general form (perhaps with full rationality being a limiting
case)” (Golub and Jackson [14]).

Acknowledgments. We would like to thank Andrea Montanari, Elchanan Mossel and Allan Sly
for valuable discussions.
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