
Asymptotic Learning on Bayesian Social Networks∗

Elchanan Mossel Allan Sly Omer Tamuz

January 29, 2014

Abstract

Understanding information exchange and aggregation on networks is a central problem in
theoretical economics, probability and statistics. We study a standard model of economic agents
on the nodes of a social network graph who learn a binary “state of the world” S, from initial
signals, by repeatedly observing each other’s best guesses.

Asymptotic learning is said to occur on a family of graphs Gn = (Vn, En) with |Vn| → ∞
if with probability tending to 1 as n → ∞ all agents in Gn eventually estimate S correctly.
We identify sufficient conditions for asymptotic learning and construct examples where learning
does not occur when the conditions do not hold.

1 Introduction

We consider a directed graph G representing a social network. The nodes of the graph are the set
of agents V , and an edge from agent u to w indicates that u can observe the actions of w. The
agents try to estimate a binary state of the world S ∈ {0, 1}, where each of the two possible states
occurs with probability one half.

The agents are initially provided with private signals which are informative with respect to S
and i.i.d., conditioned on S: There are two distributions, µ0 6= µ1, such that conditioned on S, the
private signals are independent and distributed µS .

In each time period t ∈ N, each agent v chooses an “action” Av(t), which equals whichever of
{0, 1} the state of the world is more likely to equal, conditioned on the information available to v
at time t. This information includes its private signal, as well as the actions of its social network
neighbors in the previous periods.

A first natural question is whether the agents eventually reach consensus, or whether it is
possible that neighbors “agree to disagree” and converge to different actions. Assuming that the
agents do reach consensus regarding their estimate of S, a second natural question is whether this
consensus estimator is equal to S. Certainly, since private signals are independent conditioned
on S, a large enough group of agents has, in the aggregation of their private signals, enough
information to learn S with high probability. However, it may be the case that this information is
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not disseminated by the above described process. These and related questions have been studied
extensively in economics, statistics and operations research; see Section 1.1.

We say that the agents learn on a social network graph G when all their actions converge to
the state of the world S. For a sequence of graphs {Gn}∞n=1 such that Gn has n agents, we say
that Asymptotic learning occurs when the probability that the agents learn on Gn tends to one as
n tends to infinity, for a fixed choice of private signal distributions µ1 and µ0.

An agent’s initial private belief is the probability that S = 1, conditioned only on its private
signal. When the distribution of private beliefs is atomic, asymptotic learning does not necessarily
occur (see Example A.1). This is also the case when the social network graph is undirected (see
Example 2.7). Our main result (Theorem 3) is that asymptotic learning occurs for non-atomic
private beliefs and undirected graphs.

To prove this theorem we first prove that the condition of non-atomic initial private beliefs
implies that the agents all converge to the same action, or all don’t converge at all (Theorem 1).
We then show that for any model in which this holds, asymptotic learning occurs (Theorem 2).
Note that it has been shown that agents reach agreement under various other conditions (cf.
Ménager [12]). Hence, by Theorem 2, asymptotic learning also holds for these models.

Our proof includes several novel insights into the dynamics of interacting Bayesian agents.
Broadly, we show that on undirected social network graphs connecting a countably infinite number
of agents, if all agents converge to the same action then they converge to the correct action. This
follows from the observation that if agents in distant parts of a large graph converge to the same
action then they do so almost independently. We then show that this implies that for finite graphs
of growing size the probability of learning approaches one.

At its heart of this proof lies a topological lemma (Lemma 3.13) which may be of independent
interest; the topology here is one of rooted graphs (see, e.g., Benjamini and Schramm [5], Aldous
and Steele [1]). The fact that asymptotic learning occurs for undirected graphs (as opposed to
general strongly connected graphs) is related to the fact that sets of bounded degree, undirected
graphs are compact in this topology. In fact, our proof applies equally to any such compact sets. For
example, one can replace undirected with L-locally strongly connected: a directed graph G = (V,E)
is L-locally strongly connected if, for each (u,w) ∈ E, there exists a path in G of length at most
L from w to u. Asymptotic learning also takes place on L-locally strongly connected graphs, for
fixed L, since sets of L-locally strongly connected, uniformly bounded degree graphs are compact.
See Section 3.7 for further discussion.

1.1 Related literature

1.1.1 Agreement

There is a vast economic literature studying the question of convergence to consensus in dynamic
processes and games. A founding work is Aumann’s seminal Agreement Theorem [2], which states
that Bayesian agents who observe beliefs (i.e., posterior probabilities, as opposed to actions in our
model) cannot “agree to disagree”. Subsequent work (notably Geanakoplos and Polemarchakis [10],
Parikh and Krasucki [14], McKelvey and Page [11], Gale and Kariv [9] Ménager [12] and Rosenberg,
Solan and Vieille [15]) expanded the range of models that display convergence to consensus. One is,
in fact, left with the impression that it takes a pathological model to feature interacting Bayesian
agents who do “agree to disagree”.

Ménager [12] in particular describes a model similar to ours and proves that consensus is achieved
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in a social network setting under the condition that the probability space is finite and ties cannot
occur (i.e., posterior beliefs are always different than one half). Note that our asymptotic learning
result applies for any model where consensus is guaranteed, and hence in particular applies to
models satisfying Ménager’s conditions.

1.1.2 Agents on social networks

Gale and Kariv [9] also consider Bayesian agents who observe each other’s actions. They introduce
a model in which, as in ours, agents receive a single initial private signal, and the action space is
discrete. However, there is no “state of the world” or conditionally i.i.d. private signals. Instead,
the relative merit of each possible action depends on all the private signals. Our model is in fact
a particular case of their model, where we restrict our attention to the particular structure of the
private signals described above.

Gale and Kariv show (loosely speaking) that neighboring agents who converge to two different
actions must, at the limit, be indifferent with respect to the choice between these two actions.
Their result is therefore also an agreement result, and makes no statement on the optimality of
the chosen actions, although they do profess interest in the question of “... whether the common
action chosen asymptotically is optimal, in the sense that the same action would be chosen if all the
signals were public information... there is no reason why this should be the case.” This is precisely
the question we address.

A different line of work is the one explored by Ellison and Fudenberg [8]. They study agents
on a social network that use rules of thumb rather than full Bayesian updates. A similar approach
is taken by Bala and Goyal [3], who also study agents acting iteratively on a social network. They
too are interested in asymptotic learning (or “complete learning”, in their terms). They consider
a model of bounded rationality which is not completely Bayesian. One of their main reasons for
doing so is the mathematical complexity of the fully Bayesian model, or as they state, “to keep
the model mathematically tractable... this possibility [fully Bayesian agents] is precluded in our
model... simplifying the belief revision process considerably.” In this simpler, non-Bayesian model,
Bala and Goyal show both behaviors of asymptotic learning and results of non-learning, depending
on various parameters of their model.

1.1.3 Herd behavior

The “herd behavior” literature (cf. Banerjee [4], Bikhchandani, Hirshleifer and Welch [6], Smith
and Sørensen [16]) consider related but fundamentally simpler models. As in our model there is a
“state of the world” and conditionally independent private signals. A countably infinite group of
agents is exogenously ordered, and each picks an action sequentially, after observing the actions of
its predecessors or some of its predecessors. Agents here act only once, as opposed to our model in
which they act repeatedly.

The main result for these models is that in some situations there may arise an “information
cascade”, where, with positive probability, almost all the agents take the wrong action. This is
precisely the opposite of asymptotic learning. The condition for information cascades is “bounded
private beliefs”; herd behavior occurs when the agents’ beliefs, as inspired by their private signals,
are bounded away both from zero and from one [16]. In contrast, we show that in our model
asymptotic learning occurs even for bounded beliefs.
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In the herd behavior models information only flows in one direction: If agent u learns from w
then w does not learn from u. This significant difference, among others, makes the tools used for
their analysis irrelevant for our purposes.

2 Formal definitions, results and examples

2.1 Main definitions

The following definition of the agents, the state of the world and the private signals is adapted
from [13], where a similar model is discussed.

Definition 2.1. Let (Ω,O) be a σ-algebra. Let µ0 and µ1 be different and mutually absolutely
continuous probability measures on (Ω,O).

Let δ0 and δ1 be the distributions on {0, 1} such that δ0(0) = δ1(1) = 1.
Let V be a countable (finite or infinite) set of agents, and let

P = 1
2δ0µ

V
0 + 1

2δ1µ
V
1 ,

be a distribution over {0, 1} × ΩV . We denote by S ∈ {0, 1} the state of the world and by Wu

the private signal of agent u ∈ V . Let

(S,Wu1 ,Wu2 , . . .) ∼ P.

Note that the private signals Wu are i.i.d., conditioned on S: if S = 0 - which happens with
probability half - the private signals are distributed i.i.d. µ0, and if S = 1 then they are distributed
i.i.d. µ1.

We now define the dynamics of the model.

Definition 2.2. Consider a set of agents V , a state of the world S and private signals {Wu : u ∈ V }
such that

(S,Wu1 ,Wu2 , . . .) ∼ P,

as defined in Definition 2.1.
Let G = (V,E) be a directed graph which we shall call the social network. We assume

throughout that G is simple (i.e., no parallel edges or loops) and strongly connected. Let the set of
neighbors of u be N(u) = {v : (u, v) ∈ E}. The out-degree of u is equal to |N(u)|.

For each time period t ∈ {1, 2, . . .} and agent u ∈ V , denote the action of agent u at time t by
Au(t), and denote by Fu(t) the information available to agent u at time t. They are jointly defined
by

Fu(t) = σ(Wu, {Av(t′) : v ∈ N(u), t′ < t}),

and

Au(t) =


0 P [S = 1|Fu(t)] < 1/2

1 P [S = 1|Fu(t)] > 1/2

∈ {0, 1} P [S = 1|Fu(t)] = 1/2.

Let Xu(t) = P [S = 1|Fu(t)] be agent u’s belief at time t.
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Informally stated, Au(t) is agent u’s best estimate of S given the information Fu(t) available
to it up to time t. The information available to it is its private signal Wu and the actions of its
neighbors in G in the previous time periods.

Remark 2.3. An alternative and equivalent definition of Au(t) is the MAP estimator of S, as
calculated by agent u at time t:

Au(t) = argmax
s∈{0,1}

P [S = s|F(t)] = argmax
A∈F(t)

P [A = S] ,

with some tie-breaking rule.

Note that we assume nothing about how agents break ties, i.e., how they choose their action
when, conditioned on their available information, there is equal probability for S to equal either 0
or 1.

Note also that the belief of agent u at time t = 1, Xu(1), depends only on Wu:

Xu(1) = P [S = 1|Wu] .

We call Xu(1) the initial belief of agent u.

Definition 2.4. Let µ0 and µ1 be such that Xu(1), the initial belief of u, has a non-atomic distri-
bution (⇔ the distributions of the initial beliefs of all agents are non-atomic). Then we say that
the pair (µ0, µ1) induce non-atomic beliefs.

We next define some limiting random variables: Fu is the limiting information available to u,
and Xu is its limiting belief.

Definition 2.5. Denote Fu = ∪tFu(t), and let

Xu = P [S = 1|Fu] .

Note that the limit limt→∞Xu(t) almost surely exists and equals Xu, since Xu(t) is a bounded
martingale.

We would like to define the limiting action of agent u. However, it might be the case that
agent u takes both actions infinitely often, or that otherwise, at the limit, both actions are equally
desirable. We therefore define Au to be the limiting optimal action set. It can take the values {0},
{1} or {0, 1}.

Definition 2.6. Let Au, the optimal action set of agent u, be defined by

Au =


{0} Xu < 1/2

{1} Xu > 1/2

{0, 1} Xu = 1/2.

Note that if a is an action that u takes infinitely often then a ∈ Au, but that if 0 (say) is the
only action that u takes infinitely often then it still may be the case that Au = {0, 1}. However,
we show below that when (µ0, µ1) induce non-atomic beliefs then Au is almost surely equal to the
set of actions that u takes infinitely often.
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2.2 Main results

In our first theorem we show that when initial private beliefs are non-atomic, then at the limit
t→∞ the optimal action sets of the players are identical. As Example A.1 indicates, this may not
hold when private beliefs are atomic.

Theorem 1. Let (µ0, µ1) induce non-atomic beliefs. Then there exists a random variable A such
that almost surely Au = A for all u.

I.e., when initial private beliefs are non-atomic then agents, at the limit, agree on the optimal
action. The following theorem states that when such agreement is guaranteed then the agents learn
the state of the world with high probability, when the number of agents is large. This phenomenon
is known as asymptotic learning. This theorem is our main result.

Theorem 2. Let µ0, µ1 be such that for every connected, undirected graph G there exists a random
variable A such that almost surely Au = A for all u ∈ V . Then there exists a sequence q(n) =
q(n, µ0, µ1) such that q(n) → 1 as n → ∞, and P [A = {S}] ≥ q(n), for any choice of undirected,
connected graph G with n agents.

Informally, when agents agree on optimal action sets then they necessarily learn the correct
state of the world, with probability that approaches one as the number of agents grows. This holds
uniformly over all possible connected and undirected social network graphs.

The following theorem is a direct consequence of the two theorems above, since the property
proved by Theorem 1 is the condition required by Theorem 2.

Theorem 3. Let µ0 and µ1 induce non-atomic beliefs. Then there exists a sequence q(n) =
q(n, µ0, µ1) such that q(n) → 1 as n → ∞, and P [Au = {S}] ≥ q(n), for all agents u and for
any choice of undirected, connected G with n agents.

2.3 Note on directed vs. undirected graphs

Note that we require that the graph G not only be strongly connected, but also undirected (so
that if (u, v) ∈ E then (v, u) ∈ E.) The following example (depicted in Figure 1) shows that when
private beliefs are bounded then asymptotic learning may not occur when the graph is strongly
connected but not undirected1.

Example 2.7. Consider the the following graph. The vertex set is comprised of two groups of
agents: a “royal family” clique of 5 agents who all observe each other, and 5 − n agents - the
“public” - who are connected in a chain, and in addition can all observe all the agents in the royal
family. Finally, a single member of the royal family observes one of the public, so that the graph is
strongly connected.

Now, with positive probability, which is independent of n, there occurs the event that all the
members of the royal family initially take the wrong action. Assuming the private signals are
sufficiently weak, then it is clear that all the agents of the public will adopt the wrong opinion of
the royal family and will henceforth choose the wrong action.

Note that the removal of one edge - the one from the royal back to the commoners - results
in this graph no longer being strongly connected. However, the information added by this edge

1We draw on Bala and Goyal’s [3] royal family graph.
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Figure 1: The five members of the royal family (on the right) all observe each other. The rest of
the agents - the public - all observe the royal family (as suggested by the three thick arrows in
the middle) and their immediate neighbors. Finally, one of the royals observes one of the public,
so that the graph is strongly connected. This is an example of how asymptotic learning does not
necessarily occur when the graph is undirected.

rarely has an affect on the final outcome of the process. This indicates that strong connectedness
is too weak a notion of connectedness in this context. We therefore in seek stronger notions such
as connectedness in undirected graphs.

A weaker notion of connectedness is that of L-locally strongly connected graphs, which we
defined above. For any L, the graph from Example 2.7 is not L-locally strongly connected for n
large enough.

3 Proofs

Before delving into the proofs of Theorems 1 and 2 we introduce additional definitions in subsec-
tion 3.1 and prove some general lemmas in subsections 3.2, 3.3 and 3.4. Note that Lemma 3.13,
which is the main technical insight in the proof of Theorem 2, may be of independent interest. We
prove Theorem 2 in subsection 3.5 and Theorem 1 in subsection 3.6.
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3.1 Additional general notation

Definition 3.1. We denote the log-likelihood ratio of agent u’s belief at time t by

Zu(t) = log
Xu(t)

1−Xu(t)
,

and let

Zu = lim
t→∞

Zu(t).

Note that

Zu(t) = log
P [S = 1|Fu(t)]

P [S = 0|Fu(t)]
.

and that

Zu(1) = log
dµ1
dµ0

(Wu).

Note also that Zu(t) converges almost surely since Xu(t) does.

Definition 3.2. We denote the set of actions of agent u up to time t by

Āu(t) = (Au(1), . . . , Au(t− 1)).

The set of all actions of u is similarly denoted by

Āu = (Au(1), Au(2), . . .).

We denote the actions of the neighbors of u up to time t by

Iu(t) = {Āw(t) : w ∈ N(u)} = {Aw(t′) : w ∈ N(u), t′ < t},

and let Iu denote all the actions of u’s neighbors:

Iu = {Āw : w ∈ N(u)} = {Aw(t′) : w ∈ N(u), t′ ≥ 1}.

Note that using this notation we have that Fu(t) = σ(Wu, Iu(t)) and Fu = σ(Wu, Iu).

Definition 3.3. We denote the probability that u chooses the correct action at time t by

pu(t) = P [Au(t) = S] .

and accordingly

pu = lim
t→∞

pu(t).

Definition 3.4. For a set of vertices U we denote by W (U) the private signals of the agents in U .
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3.2 Sequences of rooted graphs and their limits

In this section we define a topology on rooted graphs. We call convergence in this topology con-
vergence to local limits, and use it repeatedly in the proof of Theorem 2. The core of the proof of
Theorem 2 is the topological Lemma 3.13, which we prove here. This lemma is a claim related to
local graph properties, which we also introduce here.

Definition 3.5. Let G = (V,E) be a finite or countably infinite graph, and let u ∈ V be a vertex
in G. We denote by (G, u) the rooted graph G with root u.

Definition 3.6. Let G = (V,E) and G′ = (V ′, E′) be graphs. h : V → V ′ is a graph isomorphism
between G and G′ if (u, v) ∈ E ⇔ (h(u), h(v)) ∈ E′.

Let (G, u) and (G′, u′) be rooted graphs. Then h : V → V ′ is a rooted graph isomorphism
between (G, u) and (G′, u′) if h is a graph isomorphism and h(u) = u′.

We write (G, u) ∼= (G′, u′) whenever there exists a rooted graph isomorphism between the two
rooted graphs.

Given a (perhaps directed) graph G = (V,E) and two vertices u,w ∈ V , the graph distance
d(u,w) is equal to the length in edges of a shortest (directed) path between u and w.

Definition 3.7. We denote by Br(G, u) the ball of radius r around the vertex u in the graph
G = (V,E): Let V ′ be the set of vertices w such that d(u,w) is at most r. Let E′ = {(u,w) ∈ E :
u,w ∈ V ′}. Then Br(G, u) is the rooted graph with vertices V ′, edges E′ and root u′.

We next define a topology on strongly connected rooted graphs (or rather on their isomor-
phism classes; we shall simply refer to these classes as graphs). A natural metric between strongly
connected rooted graphs is the following (see Benjamini and Schramm [5], Aldous and Steele [1]).
Given (G, u) and (G′, u′), let

D((G, u), (G′, u′)) = 2−R,

where

R = sup{r : Br(G, u) ∼= Br(G
′, u′)}.

This is indeed a metric: the triangle inequality follows immediately, and a standard diagonalization
argument is needed to show that if D((G, u), (G′, u′)) = 0 then (G, u) ∼= (G′, u′).

This metric induces a topology that will be useful to us. As usual, the basis of this topology is
the set of balls of the metric; the ball of radius 2−R around the graph (G, u) is the set of graphs
(G′, u′) such that BR(G, u) ∼= BR(G′, u′). We refer to convergence in this topology as convergence
to a local limit, and provide the following equivalent definition for it:

Definition 3.8. Let {(Gr, ur)}∞r=1 be a sequence of strongly connected rooted graphs. We say that
the sequence converges if there exists a strongly connected rooted graph (G′, u′) such that

Br(G
′, u′) ∼= Br(Gr, ur),

for all r ≥ 1. We then write

(G′, u′) = lim
r→∞

(Gr, ur),

and call (G′, u′) the local limit of the sequence {(Gr, ur)}∞r=1.
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Let Gd be the set of strongly connected rooted graphs with degree at most d. Another standard
diagonalization argument shows that Gd is compact (see again [5, 1]). Then, since the space is
metric, every sequence in Gd has a converging subsequence:

Lemma 3.9. Let {(Gr, ur)}∞r=1 be a sequence of rooted graphs in Gd. Then there exists a subse-
quence {(Gri , uri)}∞i=1 with ri+1 > ri for all i, such that limi→∞(Gri , uri) exists.

We next define local properties of rooted graphs.

Definition 3.10. Let P be property of rooted graphs or a Boolean predicate on rooted graphs. We
write (G, u) ∈ P if (G, u) has the property, and (G, u) /∈ P otherwise.

We say that P is a local property if, for every (G, u) ∈ P there exists an r > 0 such that if
Br(G, u) ∼= Br(G

′, u′), then (G′, u′) ∈ P . Let r be such that Br(G, u) ∼= Br(G
′, u′) ⇒ (G′, u′) ∈ P .

Then we say that (G, u) has property P with radius r, and denote (G, u) ∈ P (r).

That is, if (G, u) has a local property P then there is some r such that knowing the ball of radius
r around u in G is sufficient to decide that (G, u) has the property P . An alternative name for a
local property would therefore be a locally decidable property. In our topology, local properties are
nothing but open sets: the definition above states that if (G, u) ∈ P then there exists an element
of the basis of the topology that includes (G, u) and is also in P . This is a necessary and sufficient
condition for P to be open.

We use this fact to prove the following lemma.

Definition 3.11. Let Bd be the set of infinite, connected, undirected graphs of degree at most d,
and let Brd be the set of Bd-rooted graphs

Brd = {(G, u) : G ∈ Bd, u ∈ G}.

Lemma 3.12. Brd is compact.

Proof. Lemma 3.9 states that Gd, the set of strongly connected rooted graphs of degree at most d,
is compact. Since Brd is a subset of Gd, it remains to show that Brd is closed in Gd.

The complement of Brd in Gd is the set of graphs in Gd that are either finite or directed. These are
both local properties: if (G, u) is finite (or directed), then there exists a radius r such that examining
Br(G, u) is enough to determine that it is finite (or directed). Hence the sets of finite graphs and
directed graphs in Gd are open in Gd, their intersection is open in Gd, and their complement, Brd, is
closed in Gd.

We now state and prove the main lemma of this subsection. Note that the set of graphs Bd
satisfies the conditions of this lemma.

Lemma 3.13. Let A be a set of infinite, strongly connected graphs, let Ar be the set of A-rooted
graphs

Ar = {(G, u) : G ∈ A, u ∈ G},

and assume that A is such that Ar is compact.
Let P be a local property such that for each G ∈ A there exists a vertex w ∈ G such that

(G,w) ∈ P . Then for each G ∈ A there exist an r0 and infinitely many distinct vertices {wn}∞n=1

such that (G,wn) ∈ P (r0) for all n.
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Figure 2: Schematic diagram of the proof of lemma 3.13. The rooted graph (G′, u′) is a local
limit of (G, ur). For r ≥ R, the ball BR(G′, u′) is isomorphic to the ball BR(G, ur), with w′ ∈ G′
corresponding to wr ∈ G.

Proof. Let G be an arbitrary graph in A. Consider a sequence {vr}∞r=1 of vertices in G such that
for all r, s ∈ N the balls Br(G, vr) and Bs(G, vs) are disjoint.

Since Ar is compact, the sequence {(G, vr)}∞r=1 has a converging subsequence {(G, vri)}∞r=1 with
ri+1 > ri. Write ur = vri , and let

(G′, u′) = lim
r→∞

(G, ur).

Note that since Ar is compact, (G′, u′) ∈ Ar and in particular G′ ∈ A is an infinite, strongly
connected graph. Note also that since ri+1 > ri, it also holds that the balls Br(G, ur) and Bs(G, us)
are disjoint for all r, s ∈ N.

Since G′ ∈ A, there exists a vertex w′ ∈ G′ such that (G′, w′) ∈ P . Since P is a local property,
(G′, w′) ∈ P (r0) for some r0, so that if Br0(G′, w′) ∼= Br0(G,w) then (G,w) ∈ P .

Let R = d(u′, w′) + r0, so that Br0(G′, w′) ⊆ BR(G′, u′). Then, since the sequence (G, ur)
converges to (G′, u′), for all r ≥ R it holds that BR(G, ur) ∼= BR(G′, u′). Therefore, for all r > R
there exists a vertex wr ∈ BR(G, ur) such that Br0(G,wr) ∼= Br0(G′, w′). Hence (G,wr) ∈ P (r0) for
all r > R (see Fig 2). Furthermore, for r, s > R, the balls BR(G, ur) and BR(G, us) are disjoint,
and so wr 6= ws.
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We have therefore shown that the vertices {wr}r>R are an infinite set of distinct vertices such
that (G,wr) ∈ P (r0), as required.

3.3 Coupling isomorphic balls

This section includes three claims that we will use repeatedly later. Their spirit is that everything
that happens to an agent up to time t depends only on the state of the world and a ball of radius
t around it.

Recall that Fu(t), the information available to agent u at time t, is the algebra generated by Wu

and Aw(t′) for all w neighbors of u and t′ < t. Recall that Iu(t) denotes this exact set of actions:

Iu(t) =
{
Āw(t) : w ∈ N(u)

}
=
{
Aw(t′) : w ∈ N(u), t′ < t

}
.

Claim 3.14. For all agents u and times t, Iu(t) a deterministic function of W (Bt(G, u)).

Recall (Definition 3.4) that W (Bt(G, u)) are the private signals of the agents in Bt(G, u), the
ball of radius t around u (Definition 3.7).

Proof. We prove by induction on t. Iu(1) is empty, and so the claim holds for t = 1.
Assume the claim holds up to time t. By definition, Au(t+1) is a function of Wu and of Iu(t+1),

which includes {Aw(t′) : w ∈ N(u), t′ ≤ t}. Aw(t′) is a function of Ww and Iw(t′), and hence by the
inductive assumption it is a function of W (Bt′(G,w)). Since t′ < t+ 1 and the distance between u
and w is one, W (Bt′(G,w)) ⊆ W (Bt+1(G, u)), for all w ∈ N(u) and t′ ≤ t . Hence Iu(t + 1) is a
function of W (Bt+1(G, u)), the private signals in Bt+1(G, u).

The following lemma follows from Claim 3.14 above:

Lemma 3.15. Consider two processes with identical private signal distributions (µ0, µ1), on dif-
ferent graphs G = (V,E) and G′ = (V ′, E′).

Let t ≥ 1, u ∈ V and u′ ∈ V ′ be such that there exists a rooted graph isomorphism h : Bt(G, u)→
Bt(G

′, w′).
Let M be a random variable that is measurable in Fu(t). Then there exists an M ′ that is

measurable in Fu′(t) such that the distribution of (M,S) is identical to the distribution of (M ′, S′).

Recall that a graph isomorphism between G = (V,E) and G′ = (V ′, E′) is a bijective function
h : V → V such that (u, v) ∈ E iff (h(u), h(v)) ∈ E′.

Proof. Couple the two processes by setting S = S′, and letting Ww = Ww′ when h(w) = w′. Note
that it follows that Wu = Wu′ . By Claim 3.14 we have that Iu(t) = Iu′(t), when using h to identify
vertices in V with vertices in V ′.

Since M is measurable in Fu(t), it must, by the definition of Fu(t), be a function of Iu(t) and Wu.
Denote then M = f(Iu(t),Wu). Since we showed that Iu(t) = Iu′(t), if we let M ′ = f(Iu′(t),Wu′)
then the distribution of (M,S) and (M ′, S′) will be identical.

In particular, we use this lemma in the case where M is an estimator of S. Then this lemma
implies that the probability that M = S is equal to the probability that M ′ = S′.

Recall that pu(t) = P [Au(t) = S] = maxA∈Fu(t) P [A = S]. Hence we can apply this lemma
(3.15) above to Au(t) and Au′(t):

Corollary 3.16. If Bt(G, u) and Bt(G
′, u′) are isomorphic then pu(t) = pu′(t).
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3.4 δ-independence

To prove that agents learn S we will show that the agents must, over the duration of this process,
gain access to a large number of measurements of S that are almost independent. To formalize the
notion of almost-independence we define δ-independence and prove some easy results about it. The
proofs in this subsection are relatively straightforward.

Let µ and ν be two measures defined on the same space. We denote the total variation distance
between them by dTV (µ, ν). Let A and B be two random variables with joint distribution µ(A,B).
Then we denote by µA the marginal distribution of A, µB the marginal distribution of B, and
µA × µB the product distribution of the marginal distributions.

Definition 3.17. Let (X1, X2, . . . , Xk) be random variables. We refer to them as δ-independent
if their joint distribution µ(X1,...,Xk) has total variation distance of at most δ from the product of
their marginal distributions µX1 × · · · × µXk

:

dTV (µ(X1,...,Xk), µX1 × · · · × µXk
) ≤ δ.

Likewise, (X1, . . . , Xl) are δ-dependent if the distance between the distributions is more than
δ.

We remind the reader that a coupling ν, between two random variables A1 and A2 distributed
ν1 and ν2, is a distribution on the product of the spaces ν1, ν2 such that the marginal of Ai is νi.
The total variation distance between A1 and A2 is equal to the minimum, over all such couplings
ν, of ν(A1 6= A2).

Hence to prove that X,Y are δ-independent it is sufficient to show that there exists a coupling
ν between ν1, the joint distribution of (X,Y ) and ν2, the products of the marginal distributions of
X and Y , such that ν((X1, Y1) 6= (X2, Y2)) ≤ δ.

Alternatively, to prove that (A,B) are δ-independent, one could directly bound the total vari-
ation distance between µ(A,B) and µA × µB by δ. This is often done below using the fact that the
total variation distance satisfies the triangle inequality dTV (µ, ν) ≤ dTV (µ, γ) + dTV (γ, ν).

We state and prove some straightforward claims regarding δ-independence.

Claim 3.18. Let A, B and C be random variables such that P [A 6= B] ≤ δ and (B,C) are δ′-
independent. Then (A,C) are 2δ + δ′-independent.

Proof. Let µ(A,B,C) be a joint distribution of A, B and C such that P [A 6= B] ≤ δ.
Since P [A 6= B] ≤ δ, P [(A,C) 6= (B,C)] ≤ δ, in both cases that A,B,C are picked from either

µ(A,B,C) or µ(A,B) × µC . Hence

dTV (µ(A,C), µ(B,C)) ≤ δ

and

dTV (µA × µC , µB × µC) ≤ δ.

Since (B,C) are δ′-independent,

dTV (µB × µC , µ(B,C)) ≤ δ′.

13



The claim follows from the triangle inequality

dTV (µ(A,C), µA × µC) ≤ dTV (µ(A,C), µ(B,C)) + dTV (µ(B,C), µB × µC) + dTV (µB × µC , µA × µC)

≤ 2δ + δ′.

Claim 3.19. Let (X,Y ) be δ-independent, and let Z = f(Y,B) for some function f and B that is
independent of both X and Y . Then (X,Z) are also δ-independent.

Proof. Let µ(X,Y ) be a joint distribution of X and Y satisfying the conditions of the claim. Then
since (X,Y ) are δ-independent,

dTV (µ(X,Y ), µX × µY ) ≤ δ.

Since B is independent of both X and Y ,

dTV (µ(X,Y ) × µB, µX × µY × µB) ≤ δ

and (X,Y,B) are δ-independent. Therefore there exists a coupling between (X1, Y1, B1) ∼ µ(X,Y )×
µB and (X2, Y2, B2) ∼ µX × µY × µB such that P [(X1, Y1, B1) 6= (X2, Y2, B2)] ≤ δ. Then

P [(X1, f(Y1, B1)) 6= (X2, f(Y2, B2))] ≤ δ

and the proof follows.

Claim 3.20. Let A = (A1, . . . , Ak), and X be random variables. Let (A1, . . . , Ak) be δ1-independent
and let (A,X) be δ2-independent. Then (A1, . . . , Ak, X) are (δ1 + δ2)-independent.

Proof. Let µ(A1,...,Ak,X) be the joint distribution ofA = (A1, . . . , Ak) andX. Then since (A1, . . . , Ak)
are δ1-independent,

dTV (µA, µA1 × · · · × µAk
) ≤ δ1.

Hence

dTV (µA × µX , µA1 × · · · × µAk
× µX) ≤ δ1.

Since (A,X) are δ2-independent,

dTV (µ(A,X), µA × µX) ≤ δ2.

The claim then follows from the triangle inequality

dTV (µ(A,X), µA1 × · · · × µAk
× µX) ≤ dTV (µ(A,X), µA × µX) + dTV (µA × µX , µA1 × · · · × µAk

× µX).

Lemma 3.21. For every 1/2 < p < 1 there exist δ = δ(p) > 0 and η = η(p) > 0 such that if S
and (X1, X2, X3) are binary random variables with P [S = 1] = 1/2, 1/2 < p− η ≤ P [Xi = S] < 1,
and (X1, X2, X3) are δ-independent conditioned on S then P [a(X1, X2, X3) = S] > p, where a is
the MAP estimator of S given (X1, X2, X3).
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In other words, one’s odds of guessing S using three conditionally almost-independent bits are
greater than using a single bit.

Proof. We apply Lemma 3.22 below to three conditionally independent bits which are each equal
to S w.p. at least p− η. Then

P [a(X1, X2, X3) = S] ≥ p− η + εp−η

where εq = 1
100(2q − 1)(3q2 − 2q3 − q).

Since εq is continuous in q and positive for 1/2 < q < 1, it follows that for η small enough
p − η + εp−η > p. Now, take δ < εp−η − η. Then, since we can couple δ-independent bits to
independent bits so that they differ with probability at most δ, the claim follows.

Lemma 3.22. Let S and (X1, X2, X3) be binary random variables such that P [S = 1] = 1/2. Let
1/2 < p ≤ P [Xi = S] < 1. Let a(X1, X2, X3) be the MAP estimator of S given (X1, X2, X3). Then
there exists an εp > 0 that depends only on p such that if (X1, X2, X3) are independent conditioned
on S then P [a(X1, X2, X3) = S] ≥ p+ εp.

In particular the statement holds with

εp =
1

100
(2p− 1)(3p2 − 2p3 − p).

Proof. Denote X = (X1, X2, X3).
Assume first that P [Xi = S] = p for all i. Let δ1, δ2, δ3 be such that p + δi = P [Xi = 1|S = 1]

and p− δi = P [Xi = 0|S = 0].
To show that P [a(X) = S] ≥ p + εp it is enough to show that P [b(X) = S] ≥ p + εp for some

estimator b, by the definition of a MAP estimator. We separate into three cases.

1. If δ1 = δ2 = δ3 = 0 then the events Xi = S are independent and the majority of the Xi’s
is equal to S with probability p′ = p3 + 3p2(1 − p), which is greater than p for 1

2 < p < 1.
Denote ηp = p′ − p. Then P [a(X) = S] ≥ p+ ηp.

2. Otherwise if |δi| ≤ ηp/6 for all i then we can couple X to three bits Y = (Y1, Y2, Y3) which
satisfy the conditions of case 1 above, and so that P [X 6= Y ] ≤ ηp/2. Then P [a(X) = S] ≥
p+ ηp/2.

3. Otherwise we claim that there exist i and j such that |δi + δj | > ηp/12.

Indeed assume w.l.o.g. that δ1 ≥ ηp/6. Then if it doesn’t hold that δ1 + δ2 ≥ ηp/12 and
it doesn’t hold that δ1 + δ3 ≥ ηp/12 then δ2 ≤ −ηp/12 and δ3 ≤ −ηp/12 and therefore
δ2 + δ3 ≤ −ηp/12.

Now that this claim is proved, assume w.l.o.g. that δ1 + δ2 ≥ ηp/12. Recall that Xi ∈ {0, 1},
and so the product X1X2 is also an element of {0, 1}. Then

P [X1X2 = S] = 1
2P [X1X2 = 1|S = 1] + 1

2P [X1X2 = 0|S = 0]

= 1
2 ((p+ δ1)(p+ δ2) + (p− δ1)(p− δ2) + (p− δ1)(1− p+ δ2) + (1− p+ δ1)(p− δ2))

= p+ 1
2(2p− 1)(δ1 + δ2)

≥ p+ (2p− 1)ηp/12,

and so P [a(X) = S] ≥ p+ (2p− 1)ηp/12.
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Finally, we need to consider the case that P [Xi = S] = pi > p for some i. We again consider
two cases. Denote εp = (2p − 1)ηp/100. If there exists an i such that pi > εp then this bit is by
itself an estimator that equals S with probability at least p+ εp, and therefore the MAP estimator
equals S with probability at least p+ εp.

Otherwise p ≤ pi ≤ pi + εp for all i. We will construct a coupling between the distributions
of X = (X1, X2, X3) and Y = (Y1, Y2, Y3) such that the Yi’s are conditionally independent given
S and P [Yi = S] = p for all i, and furthermore P [Y 6= X] ≤ 3εp. By what we’ve proved so far
the MAP estimator of S given Y equals S with probability at least p + (2p − 1)ηp/12 ≥ p + 8εp.
Hence by the coupling, the same estimator applied to X is equal to S with probability at least
p+ 8εp − 3εp > p+ εp.

To couple X and Y let Zi be a real i.i.d. random variables uniform on [0, 1]. When S = 1 let
Xi = Yi = S if Zi > pi + δi, let Xi = S and Yi = 1 − S if Zi ∈ [p + δi, pi + δi], and otherwise
Xi = Yi = 1− S. The construction for S = 0 is similar. It is clear that X and Y have the required
distribution, and that furthermore P [Xi 6= Yi] = pi − p ≤ εp. Hence P [X 6= Y ] ≤ 3εp, as needed.

3.5 Asymptotic learning

In this section we prove Theorem 2.

Theorem (2). Let µ0, µ1 be such that for every connected, undirected graph G there exists a random
variable A such that almost surely Au = A for all u ∈ V . Then there exists a sequence q(n) =
q(n, µ0, µ1) such that q(n) → 1 as n → ∞, and P [A = {S}] ≥ q(n), for any choice of undirected,
connected graph G with n agents.

To prove this theorem we will need a number of intermediate results, which are given over the
next few subsections.

3.5.1 Estimating the limiting optimal action set A

We would like to show that although the agents have a common optimal action set A only at the
limit t→∞, they can estimate this set well at a large enough time t.

The action Au(t) is agent u’s MAP estimator of S at time t (see Remark 2.3). We likewise
define Ku(t) to be agent u’s MAP estimator of A, at time t:

Ku(t) = argmax
K∈{{0},{1},{0,1}}

P [A = K|Fu(t)] . (1)

We show that the sequence of random variables Ku(t) converges to A for every u, or that alterna-
tively Ku(t) = A for each agent u and t large enough:

Lemma 3.23. P [limt→∞Ku(t) = A] = 1 for all u ∈ V .

This lemma (3.23) follows by direct application of the more general Lemma 3.24 which we prove
below. Note that a consequence is that limt→∞ P [Ku(t) = A] = 1.

Lemma 3.24. Let K1 ⊆ K2, . . . be a filtration of σ-algebras, and let K∞ = ∪tKt. Let K be
a random variable that takes a finite number of values and is measurable in K∞. Let M(t) =
argmaxk P [K = k|K(t)] be the MAP estimator of K given Kt. Then

P
[

lim
t→∞

M(t) = K
]

= 1.
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Proof. For each k in the support of K, P [K = k|Kt] is a bounded martingale which converges almost
surely to P [K = k|K∞], which is equal to 1 (K = k), since K is measurable in G∞. Therefore
M(t) = argmaxk P [K = k|Kt] converges almost surely to argmaxk P [K = k|K∞] = K.

We would like at this point to provide the reader with some more intuition on Au(t), Ku(t) and
the difference between them. Assuming that A = {1} then by definition, from some time t0 on,
Au(t) = 1, and from Lemma 3.23, Ku(t) = {1}. The same applies when A = {0}. However, when
A = {0, 1} then Au(t) may take both values 0 and 1 infinitely often, but Ku(t) will eventually equal
{0, 1}. That is, agent u will realize at some point that, although it thinks at the moment that 1 is
preferable to 0 (for example), it is in fact the most likely outcome that its belief will converge to
1/2. In this case, although it is not optimal, a uniformly random guess of which is the best action
may not be so bad. Our next definition is based on this observation.

Based on Ku(t), we define a second “action” Cu(t).

Definition 3.25. Let Cu(t) be picked uniformly from Ku(t): if Ku(t) = {1} then Cu(t) = 1, if
Ku(t) = {0} then Cu(t) = 0, and if Ku(t) = {0, 1} then Cu(t) is picked independently from the
uniform distribution over {0, 1}.

Note that we here extend our probability space by including in Iu(t) (the observations of agent
u up to time t) an extra uniform bit that is independent of all else and S in particular. Hence this
does not increase u’s ability to estimate S, and if we can show that in this setting u learns S then
u can also learn S without this bit. In fact, we show that asymptotically it is as good an estimate
for S as the best estimate Au(t):

Claim 3.26. limt→∞ P [Cu(t) = S] = limt→∞ P [Au(t) = S] = p for all u.

Proof. We prove the claim by showing that it holds both when conditioning on the event A = {0, 1}
and when conditioning on its complement.

When A 6= {0, 1} then for t large enough A = {Au(t)}. Since (by Lemma 3.23) limKu(t) = A
with probability 1, in this case Cu(t) = Au(t) for t large enough, and

lim
t→∞

P [Cu(t) = S|A 6= {0, 1}] = P [A = {S}|A 6= {0, 1}] = lim
t→∞

P [Au(t) = S|A 6= {0, 1}] .

When A = {0, 1} then limXu(t) = limP [Au(t) = S|Fu(t)] = 1/2 and so limP [Au(t) = S] =
1/2. This is again also true for Cu(t), since in this case it is picked at random for t large enough,
and so

lim
t→∞

P [Cu(t) = S|A = {0, 1}] =
1

2
= lim

t→∞
P [Au(t) = S|A = {0, 1}] .

3.5.2 The probability of getting it right

Recall Definition 3.3: pu(t) = P [Au(t) = S] and pu = limt→∞ pu(t) (i.e., pu(t) is the probability
that agent u takes the right action at time t). We prove here a few easy related claims that will
later be useful to us.

Claim 3.27. pu(t+ 1) ≥ pu(t).
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Proof. Condition on Fu(t + 1), the information available to agent u at time t + 1. Hence the
probability that Au(t+ 1) = S is at least as high as the probability Au(t) = S, since

Au(t+ 1) = argmax
s

P [S = s|F(t+ 1)]

and Au(t) is measurable in F(t+ 1). The claim is proved by integrating over all possible values of
Fu(t+ 1).

Since pu(t) is bounded by one, Claim 3.27 means that the limit pu exists. We show that this
value is the same for all vertices.

Claim 3.28. There exists a p ∈ [0, 1] such that pu = p for all u.

Proof. Let u and w be neighbors. As in the proof above, we can argue that P [Au(t+ 1) = S|Fu(t+ 1)] ≥
P [Aw(t) = S|Fu(t+ 1)], since Aw(t) is measurable in Fu(t + 1). Hence the same holds uncondi-
tioned, and so we have that pu ≥ pw, by taking the limit t → ∞. Since the same argument can
be used with the roles of u and w reversed, we have that pu = pw, and the claim follows from the
connectedness of the graph, by induction.

We make the following definition in the spirit of these claims:

Definition 3.29. p = limt→∞ P [Au(t) = S].

In the context of a specific social network graph G we may denote this quantity as p(G).
For time t = 1 the next standard claim follows from the fact that the agents’ signals are

informative.

Claim 3.30. pu(t) > 1/2 for all u and t.

Proof. Note that

P [Au(1) = S|Wu] = max{Xu(1), 1−Xu(1)} = max{P [S = 0|Wu] ,P [S = 1|Wu]}.

Recall that pu(1) = P [Au(1) = S]. Hence

pu(1) = E [P [Au(1) = S|Wu]]

= E [max{P [S = 0|Wu] ,P [S = 1|Wu]}]

Since max{a, b} = 1
2(a+ b) + 1

2 |a− b|, and since P [S = 0|Wu] + P [S = 1|Wu] = 1, it follows that

pu(1) = 1
2 + 1

2E [|P [S = 0|Wu]− P [S = 1|Wu] |]
= 1

2 + 1
2DTV (µ0, µ1),

where the last equality follows by Bayes’ rule. Since µ0 6= µ1, the total variation distance
DTV (µ0, µ1) > 0 and pu(1) > 1

2 . For t > 1 the claim follows from Claim 3.27 above.

Recall that |N(u)| is the out-degree of u, or the number of neighbors that u observes. The next
lemma states that an agent with many neighbors will have a good estimate of S already at the
second round, after observing the first action of its neighbors. This lemma is adapted from Mossel
and Tamuz [13], and provided here for completeness.
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Lemma 3.31. There exist constants C1 = C1(µ0, µ1) and C2 = C2(µ0, µ1) such that for any agent
u it holds that

pu(2) ≥ 1− C1e
−C2·N(u).

Proof. Conditioned on S, private signals are independent and identically distributed. Since Aw(1) is
a deterministic function of Ww, the initial actions Aw(1) are also identically distributed, conditioned
on S. Hence there exists a q such that pw(1) = P [Aw(t) = S] = q for all agents w. By Lemma 3.30
above, q > 1/2. Therefore

P [Aw(1) = 1|S = 1] 6= P [Aw(1) = 1|S = 0] ,

and the distribution of Aw(1) is different when conditioned on S = 0 or S = 1.
Fix an agent u, and let n = |N(u)| be the out-degree of u, or the number of neighbors that it

observes. Let {w1, . . . , w|N(u)|} be the set of u’s neighbors. Recall that Au(2) is the MAP estimator
of S given (Aw1(1), . . . , Awn(1)), and given u’s private signal.

By standard asymptotic statistics of hypothesis testing (cf. [7]), testing an hypothesis (in our
case, say, S = 1 vs. S = 0) given n informative, conditionally i.i.d. signals, succeeds except with
probability that is exponentially low in n. It follows that P [Au(2) 6= S] is exponentially small in n,
so that there exist C1 and C2 such that

pu(2) = P [Au(2) = S] ≥ 1− C1e
−C2·N(u).

The following claim is a direct consequence of the previous lemmas of this section.

Claim 3.32. Let d(G) = supu{N(u)} be the out-degree of the graph G; note that for infinite graphs
it may be that d =∞. Then there exist constants C1 = C1(µ0, µ1) and C2 = C2(µ0, µ1) such that

p(G) ≥ 1− C1e
−C2·d(G)

for all agents u.

Proof. Let u be an arbitrary vertex in G. Then by Lemma 3.31 it holds that

pu(2) ≥ 1− C1e
−C2·N(u),

for some constants C1 and C2. By Lemma 3.27 we have that pu(t+ 1) ≥ pu(t), and therefore

pu = lim
n→∞

pu(t) ≥ 1− C1e
−C2·N(u).

Finally, p(G) = pu by Lemma 3.28, and so

pu ≥ 1− C1e
−C2·N(u).

Since this holds for an arbitrary vertex u, the claim follows.
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3.5.3 Local limits and pessimal graphs

We now turn to apply local limits to our process. We consider here and henceforth the same model
of Definitions 2.1 and 2.2, as applied, with the same private signals, to different graphs. We write
p(G) for the value of p on the process on G, A(G) for the value of A on G, etc.

Lemma 3.33. Let (G, u) = limr→∞(Gr, ur). Then p(G) ≤ lim infr p(Gr).

Proof. Since Br(Gr, ur) ∼= Br(G, u), by Lemma 3.16 we have that pu(r) = pur(r). By Claim 3.27
pur(r) ≤ p(Gr), and therefore pu(r) ≤ p(Gr). The claim follows by taking the lim inf of both
sides.

A particularly interesting case in the one the different Gr’s are all the same graph:

Corollary 3.34. Let G be a (perhaps infinite) graph, and let {ur} be a sequence of vertices. Then
if the local limit (H,u) = limr→∞(G, ur) exists then p(H) ≤ p(G).

Recall that Bd denotes the set of infinite, connected, undirected graphs of degree at most d. Let

B =
⋃
d

Bd.

Definition 3.35. Let

p∗ = p∗(µ0, µ1) = inf
G∈B

p(G)

be the probability of learning in the pessimal graph.

Note that by Claim 3.30 we have that p∗ > 1/2. We show that this infimum is in fact attained
by some graph:

Lemma 3.36. There exists a graph H ∈ B such that p(H) = p∗.

Proof. Let {Gr = (Vr, Er)}∞r=1 be a series of graphs in B such that limr→∞ p(Gr) = p∗. Note
that {Gr} must all be in Bd for some d (i.e., have uniformly bounded degrees), since otherwise the
sequence p(Gr) would have values arbitrarily close to 1 and its limit could not be p∗ (unless indeed
p∗ = 1, in which case our main Theorem 2 is proved). This follows from Lemma 3.31.

We now arbitrarily mark a vertex ur in each graph, so that ur ∈ Vr, and let (H,u) be the limit
of some subsequence of {Gr, ur}∞r=1. Since Bd is compact (Lemma 3.12), (H,u) is guaranteed to
exist, and H ∈ Bd.

By Lemma 3.33 we have that p(H) ≤ lim infr p(Gr) = p∗. But since H ∈ B, p(H) cannot be
less than p∗, and the claim is proved.

3.5.4 Independent bits

We now show that on infinite graphs, the private signals in the neighborhood of agents that are
“far enough away” are (conditioned on S) almost independent of A (the final consensus estimate
of S).

Lemma 3.37. Let G be an infinite graph. Fix a vertex u0 in G. Then for every δ > 0 there exists
an rδ such that for every r ≥ rδ and every vertex u with d(u0, u) > 2r it holds that W (Br(G, u)),
the private signals in Br(G, u), are δ-independent of A, conditioned on S.
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Here we denote graph distance by d(·, ·).

Proof. Fix u0, and let u be such that d(u0, u) > 2r. Then Br(G, u0) and Br(G, u) are disjoint, and
hence independent conditioned on S. Hence Ku0(r) is independent of W (Br(G, u)), conditioned on
S.

Lemma 3.23 states that P [limr→∞Ku0(r) = A] = 1, and so there exists an rδ such that for
every r ≥ rδ it holds that P [Ku0(r) = A] > 1− 1

2δ.
Recall Claim 3.18: for any A,B,C, if P [A = B] = 1 − 1

2δ and B is independent of C, then
(A,C) are δ-independent.

Applying Claim 3.18 to A, Ku0(r) and W (Br(G, u)) we get that for any r greater than rδ it
holds that W (Br(G, u)) is δ-independent of A, conditioned on S.

We will now show, in the lemmas below, that in infinite graphs each agent has access to any
number of “good estimators”: δ-independent measurements of S that are each almost as likely to
equal S as p∗, the minimal probability of estimating S on any infinite graph.

Definition 3.38. We say that agent u ∈ G has k (δ, ε)-good estimators if there exists a time t
and estimators M1, . . . ,Mk such that (M1, . . . ,Mk) ∈ Fu(t) and

1. P [Mi = S] > p∗ − ε for 1 ≤ i ≤ k.

2. (M1, . . . ,Mk) are δ-independent, conditioned on S.

Claim 3.39. Let P denote the property of having k (δ, ε)-good estimators. Then P is a local
property (Definition 3.10) of the rooted graph (G, u). Furthermore, if u ∈ G has k (δ, ε)-good
estimators measurable in Fu(t) then (G, u) ∈ P (t), i.e., (G, u) has property P with radius t.

Proof. If (G, u) ∈ P then by definition there exists a time t such that (M1, . . . ,Mk) ∈ Fu(t).
Hence by Lemma 3.15, if Bt(G, u) ∼= Bt(G

′, u′) then u′ ∈ G′ also has k (δ, ε)-good estimators
(M ′1, . . . ,M

′
k) ∈ Fu′(t) and (G′, u′) ∈ P . In particular, (G, u) ∈ P (t), i.e., (G, u) has property P

with radius t.

We are now ready to prove the main lemma of this subsection:

Lemma 3.40. For every d ≥ 2, G ∈ Bd, ε, δ > 0 and k ≥ 0 there exists a vertex u, such that u has
k (δ, ε)-good estimators.

Informally, this lemma states that if G is an infinite graph with bounded degrees, then there
exists an agent that eventually has k almost-independent estimates of S with quality close to p∗,
the minimal probability of learning.

Proof. In this proof we use the term “independent” to mean “independent conditioned on S”.
We choose an arbitrary d and prove by induction on k. The basis k = 0 is trivial. Assume the

claim holds for k, any G ∈ Bd and all ε, δ > 0. We shall show that it holds for k + 1, any G ∈ Bd
and any δ, ε > 0.

By the inductive hypothesis for every G ∈ Bd there exists a vertex in G that has k (δ/100, ε)-
good estimators (M1, . . . ,Mk).

Now, having k (δ/100, ε)-good estimators is a local property (Claim 3.39). We now therefore
apply Lemma 3.13: since every graph G ∈ Bd has a vertex with k (δ/100, ε)-good estimators, any

21



graph G ∈ Bd has a time tk for which infinitely many distinct vertices {wr} have k (δ/100, ε)-good
estimators measurable at time tk.

In particular, if we fix an arbitrary u0 ∈ G then for every r there exists a vertex w ∈ G that
has k (δ/100, ε)-good estimators and whose distance d(u0, w) from u0 is larger than r.

We shall prove the lemma by showing that for a vertex w that is far enough from u0 which has
(δ/100, ε)-good estimators (M1, . . . ,Mk), it holds that for a time tk+1 large enough (M1, . . . ,Mk, Cw(tk+1))
are (δ, ε)-good estimators.

By Lemma 3.37 there exists an rδ such that if r > rδ and d(u0, w) > 2r then W (Br(G,w))
is δ/100-independent of A. Let r∗ = max{rδ, tk}, where tk is such that there are infinitely many
vertices in G with k good estimators measurable at time tk.

Let w be a vertex with k (δ/100, ε)-good estimators (M1, . . . ,Mk) at time tk, such that d(u0, w) >
2r∗. Denote

M̄ = (M1, . . . ,Mk).

Since d(u0, w) > 2rδ, W (Br∗(G,w)) is δ/100-independent of A, and since Btk(G,w) ⊆ Br∗(G,w),
W (Btk(G,w)) is δ/100-independent ofA. Finally, since M̄ ∈ Fw(tk), M̄ is a function ofW (Btk(G,w)),
and so by Claim 3.19 we have that M̄ is also δ/100-independent of A.

For tk+1 large enough it holds that

• Kw(tk+1) is equal to L with probability at least 1− δ/100, since

lim
t→∞

P [Kw(t) = A] = 1,

by Claim 3.23.

• Additionally, P [Cw(tk+1) = S] > p∗ − ε, since

lim
t→∞

P [Cw(t) = S] = p ≥ p∗,

by Claim 3.26.

We have then that (M̄,A) are δ/100-independent and P [Kw(tk+1) 6= A] ≤ δ/100. Claim 3.18
states that if (A,B) are δ-independent P [B 6= C] ≤ δ′ then (A,C) are δ+2δ′-independent. Applying
this here we get that (M̄,Kw(tk+1)) are δ/25-independent.

It follows by application of Claim 3.20 that (M1, . . . ,Mk,Kw(tk+1)) are δ-independent. Since
Cw(tk+1) is a function of Kw(tk+1) and an independent bit, it follows by another application of
Claim 3.19 that (M1, . . . ,Mk, Cw(tk+1)) are also δ-independent.

Finally, since P [Cw(tk+1) = S] > p∗−ε, w has the k+1 (δ, ε)-good estimators (M1, . . . , Cw(tk+1))
and the proof is concluded.

3.5.5 Asymptotic learning

As a tool in the analysis of finite graphs, we would like to prove that in infinite graphs the agents
learn the correct state of the world almost surely.

Theorem 3.41. Let G = (V,E) be an infinite, connected undirected graph with bounded degrees
(i.e., G is a general graph in B). Then p(G) = 1.
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Note that an alternative phrasing of this theorem is that p∗ = 1.

Proof. Assume the contrary, i.e. p∗ < 1. Let H be an infinite, connected graph with bounded
degrees such that p(H) = p∗, such as we’ve shown exists in Lemma 3.36.

By Lemma 3.40 there exists for arbitrarily small ε, δ > 0 a vertex w ∈ H that has access at
some time T to three δ-independent estimators (conditioned on S), each of which is equal to S
with probability at least p∗ − ε. By Claims 3.21 and 3.30, the MAP estimator of S using these
estimators equals S with probability higher than p∗, for the appropriate choice of low enough ε, δ.
Therefore, since w’s action Aw(T ) is the MAP estimator of S, its probability of equaling S is
P [Aw(T ) = S] > p∗ as well, and so p(H) > p∗ - contradiction.

Using Theorem 3.41 we prove Theorem 2, which is the corresponding theorem for finite graphs:

Theorem (2). Let µ0, µ1 be such that for every connected, undirected graph G there exists a random
variable A such that almost surely Au = A for all u ∈ V . Then there exists a sequence q(n) =
q(n, µ0, µ1) such that q(n) → 1 as n → ∞, and P [A = {S}] ≥ q(n), for any choice of undirected,
connected graph G with n agents.

Proof. Assume the contrary. Then there exists a series of graphs {Gr} with r agents such that
limr→∞ P [A(Gr) = {S}] < 1, and so also limr→∞ p(Gr) < 1.

By the same argument of Theorem 3.41 these graphs must all be in Bd for some d, since
otherwise, by Lemma 3.32, there would exist a subsequence of graphs {Grd} with degree at least d
and limd→∞ p(Grd) = 1. Since Bd is compact (Lemma 3.12), there exists a graph (G, u) ∈ Bd that
is the limit of a subsequence of {(Gr, ur)}∞r=1.

Since G is infinite and of bounded degree, it follows by Theorem 3.41 that p(G) = 1, and in
particular limr→∞ pu(r) = 1. As before, pur(r) = pu(r), and therefore limr→∞ pur(r) = 1. Since
p(Gr) ≥ pur(r), limr→∞ p(Gr) = 1, which is a contradiction.

3.6 Convergence to identical optimal action sets

In this section we prove Theorem 1.

Theorem (1). Let (µ0, µ1) induce non-atomic beliefs. Then there exists a random variable A such
that almost surely Au = A for all u.

In this section we shall assume henceforth that the distribution of initial private beliefs is non-
atomic.

3.6.1 Previous work

The following theorem is due to Gale and Kariv [9]. Given two agents u and w, let E0
u denote the

event that Au(t) equals 0 infinitely often E1
w and the event that Aw(t) equals 1 infinitely often.

Theorem 3.42 (Gale and Kariv). If agent u observes agent w’s actions then

P
[
E0
u, E

1
w

]
= P

[
Xu = 1/2, E0

u, E
1
w

]
.

I.e., if agent u takes action 0 infinitely often, agent w takes action 1 infinitely, and u observes
w then u’s belief is 1/2 at the limit, almost surely.
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Corollary 3.43. If agent u observes agent w’s actions, and w takes both actions infinitely often
then Xu = 1/2.

Proof. Assume by contradiction that Xu < 1/2. Then u takes action 0 infinitely often. Therefore
Theorem 3.42 implies that Xu = 1/2 - contradiction.

The case where Xu > 1/2 is treated similarly.

3.6.2 Limit log-likelihood ratios

Denote

Yu(t) = log
P
[
Iu(t)

∣∣S = 1, Āu(t)
]

P
[
Iu(t)

∣∣S = 0, Āu(t)
] .

In the next claim we show that Zu(t), the log-likelihood ratio inspired by u’s observations up to
time t, can be written as the sum of two terms: Zu(1) = dµ1

dµ0
(Wu), which is the log-likelihood

ratio inspired by u’s private signal Wu, and Yu(t), which depends only on the actions of u and its
neighbors, and does not depend directly on Wu.

Claim 3.44.

Zu(t) = Zu(1) + Yu(t).

Proof. By definition we have that

Zu(t) = log
P [S = 1|Fu(t)]

P [S = 0|Fu(t)]
= log

P [S = 1|Iu(t),Wu]

P [S = 0|Iu(t),Wu]
.

and by the law of conditional probabilities

Zu(t) = log
P [Iu(t)|S = 1,Wu]P [Wu|S = 1]

P [Iu(t)|S = 0,Wu]P [Wu|S = 0]

= log
P [Iu(t)|S = 1,Wu]

P [Iu(t)|S = 0,Wu]
+ Zu(1).

Now Iu(t), the actions of the neighbors of u up to time t, are a deterministic function ofW (Bt(G, u)),
the private signals in the ball of radius t around u, by Claim 3.14. Conditioned on S these are all
independent, and so, from the definition of actions, these actions depend on u’s private signal Wu

only in as much as it affects the actions of u. Hence

P [Iu(t)|S = s,Wu] = P
[
Iu(t)

∣∣S = s, Āu(t)
]
,

and therefore

Zu(t) = log
P
[
Iu(t)

∣∣S = 1, Āu(t)
]

P
[
Iu(t)

∣∣S = 0, Āu(t)
] + Zu(1)

= Zu(1) + Yu(t).

Note that Yu(t) is a deterministic function of Iu(t) and Āu(t).
Following our notation convention, we define Yu = limt→∞ Yu(t). Note that this limit exists

almost surely since the limit of Zu(t) exists almost surely. The following claim follows directly from
the definitions:

Claim 3.45. Yu is measurable in (Āu, Iu), the actions of u and its neighbors.
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3.6.3 Convergence of actions

The event that an agent takes both actions infinitely often is (almost surely) a sufficient condition
for convergence to belief 1/2. This follows from the fact that these actions imply that its belief
takes values both above and below 1/2 infinitely many times. We show that it is also (almost
surely) a necessary condition. Denote by Eau the event that u takes action a infinitely often.

Theorem 3.46.
P
[
E0
u ∩ E1

u, Xu = 1/2
]

= P [Xu = 1/2] .

I.e., it a.s. holds that Xu = 1/2 iff u takes both actions infinitely often.

Proof. We’ll prove the claim by showing that P
[
¬(E0

u ∩ E1
u), Xu = 1/2

]
= 0, or equivalently that

P
[
¬(E0

u ∩ E1
u), Zu = 0

]
= 0 (recall that Zu = logXu/(1−Xu) and so Xu = 1/2⇔ Zu = 0).

Let ā = (a(1), a(2), . . .) be a sequence of actions, and denote by W−u the private signals of all
agents except u. Conditioning on W−u and S we can write:

P
[
Āu = ā, Zu = 0

]
= E

[
P
[
Āu = ā, Zu = 0

∣∣W−u, S]]
= E

[
P
[
Āu = ā, Zu(1) = −Yu

∣∣W−u, S]]
where the second equality follows from Claim 3.44. Note that by Claim 3.45 Yu is fully determined
by Āu and W−u. We can therefore write

P
[
Āu = ā, Zu = 0

]
= E

[
P
[
Āu = ā, Zu(1) = −Yu(W−u, ā)

∣∣W−u, S]]
≤ E [P [Zu(1) = −Yu(W−u, ā)|W−u, S]]

Now, conditioned on S, the private signal Wu is distributed µS and is independent of W−u.
Hence its distribution when further conditioned on W−u is still µS . Since Zu(1) = log dµ1

dµ0
(Wu), its

distribution is also unaffected, and in particular is still non-atomic. It therefore equals −Yu(W−u, ā)
with probability zero, and so

P
[
Āu = ā, Zu = 0

]
= 0.

Since this holds for all sequences of actions ā, it holds in particular for all sequences which converge.
Since there are only countably many such sequences, the probability that the action converges (i.e.,
¬(E0

u ∩ E1
u)) and Zu = 0 is zero, or

P
[
¬(E0

u ∩ E1
u), Zu = 0

]
= 0.

Hence it impossible for an agent’s belief to converge to 1/2 and for the agent to only take one
action infinitely often. A direct consequence of this, together with Thm. 3.42, is the following
corollary:

Corollary 3.47. The union of the following three events occurs with probability one:

1. ∀u ∈ V : limt→∞Au(t) = S. Equivalently, all agents converge to the correct action.

2. ∀u ∈ V : limt→∞Au(t) = 1− S. Equivalently, all agents converge to the wrong action.
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3. ∀u ∈ V : Xu = 1/2, and in this case all agents take both actions infinitely often and hence
don’t converge at all.

Proof. Consider first the case that there exists a vertex u such that u takes both actions infinitely
often. Let w be a vertex that observes u. Then by Corollary 3.43 we have that Xw = 1/2, and
by Theorem 3.46 w also takes both actions infinitely often. Continuing by induction and using the
fact that the graph is strongly connected we obtain the third case that none of the agents converge
and Xu = 1/2 for all u.

It remains to consider the case that all agents’ actions converge to either 0 or 1. Using strong
connectivity, to prove the theorem it suffices to show that it cannot be the case that w observes u
and they converge to different actions. In this case, by Corollary 3.43 we have that Xw = 1/2, and
then by Theorem 3.46 agent w’s actions do not converge - contradiction.

Theorem 1 is an easy consequence of this theorem. Recall that Au = {1} when Xu > 1/2,
Au = {0} when Xu < 1/2 and Au = {0, 1} when Xu = 1/2.

Theorem (1). Let (µ0, µ1) induce non-atomic beliefs. Then there exists a random variable A such
that almost surely Au = A for all u.

Proof. Fix an agent v. When Xv < 1/2 (resp. Xv > 1/2) then the first (resp. second) case of
corollary 3.47 occurs and A = {0} (resp. A = {1}). Likewise when Xv = 1/2 then the third case
occurs, Xu = 1/2 for all u ∈ V and Au = {0, 1} for all u ∈ V .

3.7 Extension to L-locally connected graphs

The main result of this article, Theorem 2, is a statement about undirected graphs. We can extend
the proof to a larger family of graphs, namely, L-locally connected graphs.

Definition 3.48. Let G = (V,E) be a directed graph. G is L-locally strongly connected if, for each
(u,w) ∈ E, there exists a path in G of length at most L from w to u.

Theorem 2 can be extended as follows.

Theorem 3.49. Fix L, a positive integer. Let µ0, µ1 be such that for every strongly connected,
directed graph G there exists a random variable A such that almost surely Au = A for all u ∈ V .
Then there exists a sequence q(n) = q(n, µ0, µ1) such that q(n)→ 1 as n→∞, and P [A = {S}] ≥
q(n), for any choice of L-locally strongly connected graph G with n agents.

The proof of Theorem 3.49 is essentially identical to the proof of Theorem 2. The latter is
a consequence of Theorem 3.41, which shows learning in bounded degree infinite graphs, and of
Lemma 3.32, which implies asymptotic learning for sequences of graphs with diverging maximal
degree.

Note first that the set of L-locally strongly connected rooted graphs with degrees bounded by d
is compact. Hence the proof of Theorem 3.41 can be used as is in the L-locally strongly connected
setup.

In order to apply Lemma 3.32 in this setup, we need to show that when in-degrees diverge then
so do out-degrees. For this note that if (u, v) is a directed edge then u is in the (directed) ball of
radius L around v. Hence, if there exists a vertex v with in-degree D then in the ball of radius L
around it there are at least D vertices. On the other hand, if the out-degree is bounded by d, then
the number of vertices in this ball is at most L · dL. Therefore, d→∞ as D →∞.
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A Example of Non-atomic private beliefs leading to non-learning

We sketch an example in which private beliefs are atomic and asymptotic learning does not occur.

Example A.1. Let the graph G be the undirected chain of length n, so that V = {1, . . . , n} and
(u, v) is an edge if |u − v| = 1. Let the private signals be bits that are each independently equal
to S with probability 2/3. We choose here the tie breaking rule under which agents defer to their
original signals2.

We leave the following claim as an exercise to the reader.

Claim A.2. If an agent u has at least one neighbor with the same private signal (i.e., Wu = Wv

for v a neighbor of u) then u will always take the same action Au(t) = Wu.

Since this happens with probability that is independent of n, with probability bounded away
from zero an agent will always take the wrong action, and so asymptotic learning does not occur. It
is also clear that optimal action sets do not become common knowledge, and these fact are indeed
related.
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