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Abstract

We establish a new characterization of property (T) in terms of the Furstenberg
entropy of nonsingular actions. Given any generating measure µ on a countable group
G, A. Nevo showed that a necessary condition for G to have property (T) is that
the Furstenberg µ-entropy values of the ergodic, properly nonsingular G-actions are
bounded away from zero. We show that this is also a sufficient condition.

1 Introduction

A measurable action on a probability space Gy(X, η) is called a nonsingular action if the
measure η is quasi-invariant with respect to any g ∈ G; that is, if η and g∗η are equivalent (i.e.,
mutually absolutely continuous) measures. We say that the action is properly nonsingular if
η is not equivalent to a G-invariant probability measure.

A probability measure µ on a countable group G is generating if its support generates G
as a semigroup.

Let Gy(X, η) be a nonsingular action and let µ be a probability measure on G. The
Furstenberg entropy [5] or µ-entropy is defined by

hµ(X, η) =
∑
g∈G

µ(g)

∫
X

− log
dg−1
∗ η

dη
(x) dη(x).

Jensen’s inequality implies that hµ(X, η) ≥ 0 and that, for generating measures, equality
holds if and only if η is an invariant measure. Furstenberg entropy is an important conjugacy
invariant of nonsingular actions [11], and in particular of stationary actions; Gy(X, η) is
µ-stationary if µ ∗ η = η.
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The pair (G, µ) is said to have an entropy gap if there exists some constant ε = ε(G, µ) > 0
such that the µ-entropy of any ergodic, properly nonsingular G-action on a probability space
is at least ε.

A group G has property (T), if any unitary representation of G which has almost invariant
vectors admits a non-zero invariant vector. The purpose of this paper is to establish a similar
characterization of property (T), using nonsingular actions instead of unitary representations,
and thinking of those with small entropy values as being “almost invariant”.

Theorem 1. Let G be a countable group. Then G has property (T) if and only if for every
(equivalently, for some) generating measure µ, (G, µ) has an entropy gap.

For the case that G has property (T) this theorem follows from Nevo [10, Propositions 4.1,
4.2]. Note that the statements of these propositions omit the requirements that η is ergodic
and properly nonsingular; the result is no longer true without either of these hypotheses.
For completeness, we include in Appendix A a reproduction of Nevo’s proof of this direction.

The idea of the proof of the other direction (i.e., that groups without property (T) have
no entropy gap) is the following. We first consider the group 2N

fin; the elements of this
group are the finite subsets of N and the group operation is symmetric difference. For this
group, we construct in Section 2 very simple nonsingular actions which show that 2N

fin has

no entropy gap, for a family of natural measures on 2N
fin.

Then, in Section 3, we observe that any countable group G without property (T) admits a
non-trivial cocycle into 2N

fin. Using these cocycles one can construct skew-product G-actions

over 2N
fin spaces; the entropy formula for skew-product actions is established in Section 4.

Finally, in Section 5 we prove Theorem 1, by showing that the 2N
fin-actions that we construct

in Section 2, and which have arbitrarily low Furstenberg entropy, can be lifted to skew-
product G-actions with arbitrarily low Furstenberg entropy.

1.1 Related literature

1.1.1 Characterizing property (T)

Recently, Ozawa [12] showed that property (T) can be characterized by the spectral gap
of ∆µ ∈ R[G], the Laplacian associated with a finitely supported, symmetric generating
measure µ. This characterization is one of many which have been established since Kazhdan’s
first definition of property (T) [9], some of which have been instrumental in proving property
(T) for groups that were previously not known to have it. We refer the reader to Bekka, de
La Harpe and Valette [1] for a complete discussion.

1.1.2 Stationary actions

A particularly interesting class of nonsingular actions are the stationary ones. Furstenberg
entropy has been a useful tool in the study of stationary actions (e.g., [5, 8]), and the study of
the set of entropy values realizable by properly nonsingular stationary actions has attracted
some interest [11, 2, 6].
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Nevo’s theorem (Theorem A.1) implies that for every (G, µ), where G has property (T),
the Furstenberg entropy values of properly nonsingular, ergodic µ-stationary actions are
bounded away from zero; in this case we say that (G, µ) has a stationary entropy gap. In [2]
and [6] it is shown that some (G, µ) without property (T) have no stationary entropy gap.
However, this is not a characterization of property (T): in a previous paper [3, Proposition
7.5] we show that there exist (G, µ) without property (T), but with a stationary entropy
gap.

A question that therefore remains open is that of characterizing the pairs (G, µ) that have
a stationary entropy gap. More narrowly, it is not even known that all amenable groups have
no stationary entropy gap.

2 The case of 2Nfin

Let 2N
fin denote the set of all finite subsets of the natural numbers N = {1, 2, 3, . . .}. Endowed

with the operation of symmetric difference, 2N
fin is an abelian group in which every element

other than the identity is an involution. For T ∈ 2N
fin, let max(T ) = maxt∈T t. We also let

max(∅) = 0. Because 2N
fin is an abelian group we will use additive notation when expressing

group multiplication. Thus T + S := T M S = (T \ S) ∪ (S \ T ) for any T, S ∈ 2N
fin.

Let 2N
fin act on 2N by symmetric difference, identifying elements of 2N with subsets of N.

Let ωp be a measure on 2N given by ωp =
∏

NB(p), where B(p) is the Bernoulli p measure
on {0, 1}.

Proposition 2.1. Consider the action 2N
finy(2N, ωp). Then, for any probability measure µ

on 2N
fin, the µ-entropy of (2N, ωp) is

hµ(2N, ωp) = ϕ(p)
∑
T∈2Nfin

µ(T )|T | ≤ ϕ(p)
∑
T∈2Nfin

µ(T ) max(T ),

where ϕ(p) = log p
1−p(2p− 1).

Note that limp→1/2 ϕ(p) = 0 and that for p 6= 1/2 it holds that ϕ(p) > 0.

Proof. For T ∈ 2N
fin, T−1

∗ ωp = T∗ωp =
∏

n∈T B(1− p)
∏

n6∈T B(p). Hence∫
X

− log
dT∗ω

dω
(x) dω(x) = ϕ(p)|T |

where ϕ(p) = log p
1−p(2p− 1) is the Kullback-Leibler divergence between B(p) and B(1− p).

Finally, it follows that for any measure µ on 2N
fin,

hµ(2N, ωp) = ϕ(p)
∑
T∈2Nfin

µ(T )|T | ≤ ϕ(p)
∑
T∈2Nfin

µ(T ) max(T ).
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It is easy to show that ωp is ergodic and is not equivalent to an invariant probability
measure (see Lemma 4.2; an invariant measure λ would have to satisfy λ({x : xn = 1}) =
1/2). Hence it follows from this proposition that 2N

fin does not have an entropy gap, for any
µ with

∑
T∈2Nfin

µ(T ) max(T ) <∞. In the remainder of this paper we lift this result to any

group without property (T).

3 Non-property (T) and cocycles

Before stating the next proposition, let us recall some standard definitions. Given a nonsin-
gular action Gy(X, η) and a countable group Γ, a cocycle c : G ×X → Γ is a measurable
map such that

c(gh, x) = c(g, hx)c(h, x)

for a.e. x and every g, h ∈ G. Two such cocycles c1, c2 : G × X → Γ are cohomologous if
there exists a measurable function β : X → Γ such that

c1(g, x) = β(gx)c2(g, x)β(x)−1

for every g ∈ G and a.e. x. A cocycle is a coboundary if it is cohomologous to the trivial
cocycle (whose essential image is contained in the trivial element {e}).

Proposition 3.1. Assume G does not have property (T). Let ρ : G → N be a proper
function (so ρ−1(n) is finite for every n ∈ N). Then there exists an ergodic probability
measure preserving action Gy(X, η) and a Borel cocycle c : G × X → 2N

fin such that c is
not cohomologous to a cocycle with a finite image. Moreover, for every element g ∈ G,∫

X

max(c(g, x)) dη(x) ≤ ρ(g).

Proof. This result follows from the proof of [7, Theorem 2.1] as we now explain. It is a well-
known result of Connes and Weiss [4] that if G does not have property (T) then there exists
an ergodic probability measure preserving action Gy(X, η) which is not strongly ergodic
(see also [1, Theorem 6.3.4]). By [7, Lemma 2.4] there exist Borel sets Dn ⊂ X such that
the following hold.

1. Dn is asymptotically invariant: limn→∞ η(gDn M Dn) = 0 for every g ∈ G;

2. limn→∞ η(Dn) = 1/2.

3. For every g ∈ G with ρ(g) ≤ n, η(Dn M gDn) < 2−n.

To be precise, the last statement follows from an easy modification of the proof of [7, Lemma
2.4]; see equation (2.10) there.

Define a map φ : X → 2N by φ(x) = {j ∈ N : x ∈ Dj}. We let 2N
fin act on 2N by

symmetric difference.

4



Let g ∈ G. If m ≥ ρ(g) then

η({x ∈ X : φ(gx) /∈ 2N
fin M φ(x)}) ≤

∞∑
k=m

η(Dk M gDk) < 2−m+1.

Sincem ≥ ρ(g) is arbitrary, the left hand side must equal zero. Therefore φ(gx) ∈ 2N
fin M φ(x)

for η-a.e. x ∈ X.
Define the cocycle c : G × X → 2N

fin by c(g, x) = T if φ(gx) = T M φ(x). If ρ(g) = m
then ∫

X

max(c(g, x)) dη(x) ≤ m− 1 +

∫
{x:max(c(g,x))≥m}

max(c(g, x)) dη(x)

≤ m− 1 +
∞∑
n=m

η({x ∈ X : max(c(g, x)) ≥ n})

≤ m− 1 +
∞∑
n=m

η(Dn M gDn) ≤ m− 1 + 2−m+1 ≤ m.

The cocycle c cannot be cohomologous to a cocycle with a finite image, since φ is nontriv-
ial. To be precise, for m ∈ N, we let 2m < 2N

fin denote the subgroup consisting of all elements

T ∈ 2N
fin with support in [m] := {1, . . . ,m}. Denote by [m]c = {m+ 1,m+ 2, . . . } the com-

plement of [m] in N. To obtain a contradiction, suppose there is a Borel map f : X → 2N
fin

and a cocycle b : G×X → 2m such that

c(g, x) = f(gx) + b(g, x) + f(x)

for a.e. x ∈ X and every g ∈ G. Note that all elements of 2N
fin are involutions, and so

−f(x) = f(x).
Let ψ(x) = f(x) M φ(x). Observe that

ψ(gx) = f(gx) M φ(gx) = f(gx) M c(g, x) M φ(x) = f(gx) M f(gx) M b(g, x) M f(x) M φ(x)

= b(g, x) M ψ(x)

for a.e. x ∈ X and every g ∈ G.
Let ψ̃(x) = ψ(x) ∩ [m]c, f̃(x) = f(x) ∩ [m]c and φ̃(x) = φ(x) ∩ [m]c. Then, since

b(g, x) ⊆ [m],
ψ̃(gx) = (b(g, x) M ψ(x)) ∩ [m]c = ψ̃(x),

and ψ̃ is G-invariant. Because Gy(X, η) is ergodic, there is an element R ∈ 2[m]c such that
ψ̃(x) = R for a.e. x. Thus

R = ψ̃(x) = f̃(x) M φ̃(x),

which implies φ̃(x) M R = f̃(x) ∈ 2N
fin for a.e. x ∈ X.

Let D′n = Dn if n 6∈ R, and otherwise let D′n = X \ Dn, the complement of Dn. Then,
for a.e. x ∈ X, there are only a finite number of elements j ∈ [m]c such that x ∈ D′j; these

are precisely the elements in f̃(x).
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It follows that if we let An = {x ∈ X : max(f̃(x)) ≥ n}, then limn η(An) = 0. But An
contains D′n, and so η(An) ≥ η(D′n), in contradiction to the fact that limn η(D′n) = 1/2.

4 Entropy for skew-products

Lemma 4.1. Let G be a countable group with a probability measure µ. Let Gy(X, η) be
a probability measure preserving action, and let c : G ×X → Γ be a cocycle to a countable
group Γ. Also, let Γy(W,ω) be a nonsingular action on the probability space (W,ω). Let
GyX ×W be the skew-product action

g(x,w) = (gx, c(g, x)w).

Then

hµ(X ×W, η × ω) =

∫
X

hµx(W,ω) dη(x)

where µx is the pushforward of µ under the map g 7→ c(g, x).

Proof.

hµ(X ×W, η × ω) =
∑
g∈G

µ(g)

∫
X×W

− log

(
dg−1
∗ (η × ω)

dη × ω
(x,w)

)
dη × ω(x,w)

=
∑
g∈G

µ(g)

∫
X×W

− log

(
dc(g, x)−1

∗ ω

dω
(w)

)
dη × ω(x,w).

Note that the integrand is the sum of an integrable function with a nonnegative function: if

we denote r(x,w) = dc(g,x)−1
∗ ω

dω
(w) then r is in L1(X ×W, η × ω), and therefore the negative

part of − log r is integrable. We can thus apply the Fubini-Tonelli Theorem and write

=
∑
g∈G

µ(g)

∫
X

(∫
W

− log

(
dc(g, x)−1

∗ ω

dω
(w)

)
dω(w)

)
dη(x).

The innermost integral is always non-negative, since it is a relative entropy. We can therefore
exchange the order of integration, so that

=

∫
X

∑
γ∈Γ

µx(γ)

∫
W

− log

(
dγ−1
∗ ω

dω
(w)

)
dω(w)dη(x)

=

∫
X

hµx(W,ω) dη(x).
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Lemma 4.2. Let En = {x ∈ 2N : xn = 1}. Let ν be a Borel probability measure on 2N such
that ν(En) ≤ 1/2 for infinitely many n ∈ N, and let ωp be the i.i.d. Bernoulli p measure on
2N, with p > 1/2. Then ν is not absolutely continuous with respect to ωp.

Proof. Let {ik}∞k=1 be a sequence of indices such that ν(Eik) < 1/2. For x ∈ 2N, denote

Sn(x) =
1

n

n∑
k=1

1Eik
(x),

and let

S(x) = lim inf
n

Sn(x),

so that, clearly, ωp({x ∈ 2N : S(x) 6= p}) = 0. But∫
X

Sn(x) dν(x) =
1

n

n∑
k=1

ν(Eik) ≤ 1/2,

and so by Fatou’s Lemma,∫
X

S(x) dν(x) ≤ lim inf
n

1

n

n∑
k=1

ν(Eik) ≤ 1/2 < p.

Hence ν({x ∈ 2N : S(x) 6= p}) > 0, and ν is not absolutely continuous with respect to
ωp.

Lemma 4.3. Let Gy(X, η) be an ergodic probability measure preserving action, let c :
G × X → 2N

fin be a cocycle, and let 2N
fin act on 2N by symmetric difference. Consider the

skew-product action GyX × 2N given by g(x, y) = (gx, c(g, x)y).
Denote by ωp the Bernoulli p i.i.d. measure on 2N. For any 1/2 < p < 1, if there exists

a G-invariant probability measure that is absolutely continuous with respect to η × ωp, then
c is cohomologous to a cocycle with a finite image.

Proof. Let λ � η × ωp be a G-invariant probability measure. Note that λ projects to a
G-invariant probability measure on X which is absolutely continuous with respect to η.
Because η is ergodic, this projection must equal η. Hence

dλ(x, y) = dη(x)dλx(y)

where λ =
∫
δx × λx dη(x) is the disintegration of λ over η (here δx is the Dirac measure

concentrated on {x}). Also

dλ

dη × ωp
(x, y) =

dλx
dωp

(y).
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It follows that λx � ωp, for a.e. x. By the invariance of λ we have that, for every g ∈ G,
g∗λ = λ which implies

λgx = (g∗λ)gx = c(g, x)∗λx

for a.e. x.
Let En = {x ∈ 2N : xn = 1}, and let f(x) = {n ∈ N : λx(En) = 1/2}. By Lemma 4.2

f(x) is finite for a.e. x ∈ X, since λx � ωp for a.e. x ∈ X. Then

f(gx) = {n ∈ N : λgx(En) = 1/2}
= {n ∈ N : c(g, x)∗λx(En) = 1/2}
= f(x),

since for any measure ν on 2N and T ∈ 2N
fin, T∗ν(En) = 1 − ν(En) if n ∈ T and T∗ν(En) =

ν(En) otherwise; in any case, T∗ν(En) = 1/2 iff ν(En) = 1/2.
By the ergodicity of η it follows that there exists a T ∈ 2N

fin such that f(x) = T for a.e.
x ∈ X. Let m = max(T ), and denote c̃(g, x) = c(g, x) \ {1, . . . ,m}.

Let θ(x) = {n > m : λx(En) < 1/2}. Then

θ(gx) = {n > m : λgx(En) < 1/2}
= {n > m : c(g, x)∗λx(En) < 1/2}
= c̃(g, x) M {n > m : λx(En) < 1/2}
= c̃(g, x) M θ(x),

where the third equality is a consequence of the fact that λx(En) 6= 1/2 for every n > m
and a.e. x ∈ X. Note that θ(x) is finite, by another application of Lemma 4.2. Hence c̃ is a
coboundary, and so c is cohomologous to the cocycle c M c̃ whose image is in 2m.

5 Proof of main theorem

Proof of Theorem 1. Let µ be an arbitrary generating measure on G. We prove the theorem
by showing that G has property (T) if and only if (G, µ) has an entropy gap.

By Theorem A.1 we may assume G does not have property (T). Let ρ : G → N be a
proper function such that ∑

g∈G

µ(g)ρ(g) ≤ 2.

By Proposition 3.1 there exists an ergodic probability measure preserving action Gy(X, η)
and a cocycle c : G ×X → 2N

fin that is not cohomologous to a cocycle with a finite image.
Moreover, ∫

X

max(c(g, x)) dη(x) ≤ ρ(g)
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for any g ∈ G. By Proposition 2.1 for every ε > 0 there exists a Bernoulli probability
measure ωp(ε) on 2N such that for any probability measure ν on 2N

fin,

hν(2
N, ωp(ε)) ≤ ε

∑
T∈2Nfin

ν(T ) max(T ).

Consider the skew-product action GyX × 2N given by g(x, T ) = (gx, c(g, x)T ). By
Lemma 4.1,

hµ(X × 2N, η × ωp(ε)) =

∫
X

hµx(2N, ωp(ε)) dη(x)

≤ ε

∫
X

∑
T∈2Nfin

µx(T ) max(T ) dη(x).

Note that, by Proposition 3.1, we know that∫
X

∑
T∈2Nfin

µx(T ) max(T ) dη(x) =
∑
g∈G

µ(g)

∫
X

max(c(g, x)) dη(x) ≤
∑
g∈G

µ(g)ρ(g) ≤ 2,

and so

lim
ε→0

hµ(X × 2N, η × ωp(ε)) = 0.

Since c is not cohomologous to a cocycle with a finite image, Lemma 4.3 implies that
each measure η× ωp(ε) is properly nonsingular, and furthermore almost every measure in its
ergodic decomposition is properly nonsingular.

Recall that the entropy of a convex combination of mutually singular measures is the
same convex combination of their entropies. Therefore, since the entropy of η × ωp(ε) is a
convex combination of the entropies of its ergodic components, it follows that there exist
ergodic, properly nonsingular G-actions with arbitrarily small entropy, and therefore (G, µ)
does not have an entropy gap.

A Groups with property (T)

Theorem A.1 (Nevo). Let G be a countable group with property (T), and let µ be a gener-
ating measure. Then (G, µ) has an entropy gap.

The following proof is based on Nevo’s [10].

Proof. Let µ̄ be the measure on G given by

µ̄ =
∞∑
n=0

2−n−1µn,
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where µn is the convolution of µ with itself n times. Then hµ̄(X, η) = hµ(X, η) (see, e.g. [8],
or [6, Section 2.8]). The advantage of µ̄ is that it is supported everywhere on G.

Consider, given a nonsingular action Gy(X, η), the unitary representation π on L2(X, η)
given by

π(g)f(x) =

√
dg∗η

dη
(x)f(g−1x).

Note that π(g)∗ = π(g−1).
It is easy to check that by Jensen’s inequality, for any g ∈ G,

−2 log 〈1, π(g)1〉 = −2 log
〈
π(g−1)1, 1

〉
≤
∫
X

− log
dg−1
∗ η

dη
(x)dη(x). (1)

Consider the Markov operator π(µ̄) : L2(X, η) → L2(X, η) given by π(µ̄) =
∑

g∈G µ̄(g)π(g).
Then (1) yields the bound −2 log ‖π(µ̄)‖ ≤ hµ̄(X, η), by another application of Jensen’s
inequality.

Denote

‖µ̄‖T = sup {‖π (µ̄) ‖ : π is a unitary representation of G with no invariant vectors} .

If G has property (T) then ‖µ̄‖T < 1 (see, e.g., Bekka, de La Harpe and Valette [1, Corollary
6.2.3]); here we use the fact that µ̄ is supported everywhere.

When Gy(X, η) is properly nonsingular ergodic action, L2(X, η) has no invariant vectors
(see [3, Lemma 7.2]). It therefore follows that

0 < −2 log ‖µ̄‖T ≤ −2 log ‖π(µ̄)‖ ≤ hµ̄(X, η) = hµ(X, η),

and (G, µ) has an entropy gap, with ε(µ) = −2 log ‖µ̄‖T .
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