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Abstract

We investigate inherent stochasticity in individual choice behavior across

diverse decisions. Each decision is modeled as a menu of actions with out-

comes, and a stochastic choice rule assigns probabilities to actions based on the

outcome pro�le. Outcomes can be monetary values, lotteries, or elements of

an abstract outcome space. We characterize decomposable rules: those that

predict independent choices across decisions not a�ecting each other. For mon-

etary outcomes, such rules form the one-parametric family of multinomial logit

rules. For general outcomes, there exists a universal utility function on the

set of outcomes, such that choice follows multinomial logit with respect to this

utility. The conclusions are robust to replacing strict decomposability with

an approximate version or allowing minor dependencies on the actions' labels.

Applications include choice over time, under risk, and with ambiguity.
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1 Introduction

Consider an individual choosing an action from a �nite menu of actions, say, whether

to wear a red, green, or blue shirt on a particular day. Such a choice may look

stochastic to an analyst unaware of some of the factors a�ecting the choice, e.g., the

individual's favorite color or whether it is St. Patrick's Day. This perceived stochas-

ticity motivated the widespread empirical use of random utility models, which assume

that individuals are rational utility maximizers, but the utilities contain random un-

observed components originating from unobservable latent variables.

By contrast, a substantial body of research suggests that choice behavior may be

inherently stochastic, i.e., randomness would not be completely eliminated even if the

analyst had perfect access to the individual's type and all the external factors a�ecting

the decision. For example, inherent stochasticity may originate from a preference for

randomization, or from ambiguity aversion/regret minimization (see, e.g., Machina,

1985; Cerreia-Vioglio, Dillenberger, Ortoleva, and Riella, 2019; Agranov and Ortoleva,

2017, 2022, and references therein), cognitive costs (see Mat¥jka and McKay, 2015),

or the neuro-physiological origin of the decision-making process (e.g., Webb, 2019,

and references therein).

Our paper develops an axiomatic approach to model the inherent stochasticity of

choice behavior. Our approach has two key features. First, it is agnostic to the origin

of stochasticity. Instead of deriving a choice rule from a particular mechanism be-

hind stochasticity, we start from a broad family of choice rules allowing for irrational

behaviors, and so do not assume that individuals are random utility maximizers.1

We impose assumptions (axioms) on the choice rules and characterize choice rules

compatible with these axioms. Second, we assume that the choice rule governs in-

dividual's behavior�and thus axioms apply�over a broad range of decisions. This

enables strong conclusions based on seemingly weak axioms.

Each decision is modeled as a �nite menu of actions in which each action is assigned

an outcome. The outcomes represent all relevant information about the actions. We

�rst study the baseline case, where the relevant information about each action is

1Necessary conditions for a stochastic choice rule to originate from a random utility model were

derived by Block and Marschak (1959). Falmagne (1978) demonstrated their su�ciency; see also

McFadden and Richter (1990). By allowing irrational behaviors, we also allow for violating these

conditions.
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summarized by a single number. Such a numerical outcome may represent monetary

rewards or costs associated with an action. However, we do not assume that the

decision-maker is engaged in maximization of any sort.

A stochastic choice rule is a model that describes how an individual chooses their

actions across di�erent decisions. Formally, they are maps that assign to each menu

a choice probability for each action. This is a rich, non-parametric family of rules,

which leads to the problem of model selection. We take an axiomatic approach to

this problem, based on a concept that we call decomposability.

Decomposability can be motivated by the following example. Consider choosing

which of three shirts to wear and which of two brands of cereals to eat for breakfast.

While this is a choice from a menu of six actions, the decision naturally decomposes

into two separate ones that every human would treat separately. Decomposability

is an Occam's Razor that extends this logic, imposing independent choices across

sub-decisions that are unrelated in the sense that there is no complementarity or sub-

stitutability in their outcomes. By contrast, the choice of shirt may not be unrelated

to the choice of pants, and so decomposability would not imply that these are chosen

independently.

Formally, a stochastic choice rule is decomposable if, whenever a decision decom-

poses into unrelated ones, the choices are made as if they were made in isolation, and

independently of each other. In particular, consider two unrelated decisions, such as

selecting a shirt and cereal. We can apply a choice rule to each of the two corre-

sponding menus separately and then sample a pair of actions independently from the

corresponding distributions. Alternatively, we can compose the two menus into one

by pairing actions and summing outcomes, and then apply the rule to this composed

menu. Summing the outcomes of the two actions manifests that actions are unrelated

in the sense that the reward or cost of one does not a�ect that of the other. We say

that a rule is decomposable if both routes yield the same distribution over pairs of

actions.

At �rst glance, decomposability is an extremely weak requirement, as it places no

restriction on decisions that are not composed of independent sub-decisions. Contrary

to this intuition, decomposability imposes enough constraints across decisions to pin

down a one-parametric family of rules.

Our �rst main result is the characterization of all decomposable stochastic choice

rules. Under mild additional assumptions, we show that multinomial logit is the
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only such rule. Moreover, the parameter in the logit (the coe�cient in the exponent)

is identical across all decisions. This result provides a simple, novel foundation for

this widely used choice rule. It also shows that decomposability is violated by all

other stochastic choice rules, such as the widely used probit. In contrast to our

characterization, the commonly used random utility motivation for multinomial logit

requires very speci�c, reverse-engineered, assumptions about the distribution of utility

shocks. Indeed, multinomial logit corresponds to a random utility model with shocks

following the Gumbel distribution (Luce and Suppes, 1965).

Our result highlights that an analyst selecting a stochastic choice rule for one

particular decision implicitly makes assumptions about the counterfactual behavior

of the individual. Indeed, unless multinomial logit is selected for the decision of

interest, it is possible to �nd a pair of unrelated decisions that would be solved

together di�erently than they would in isolation.

An additional, unexpected conclusion is that decomposability implies rational

utility-maximizing behavior; the individual behaves as if she was maximizing or min-

imizing the outcome of a chosen action plus noise with magnitude depending on the

parameter. Thus the outcomes can be interpreted as utilities or disutilities, respec-

tively, even though no rationality assumption was made a priori.

The theorem also demonstrates a logical relation between seemingly unrelated

behavioral patterns. Indeed, multinomial logit has a number of properties distin-

guishing it from a generic stochastic choice rule, and our theorem demonstrates that

all these properties are implied by decomposability. For example, logit has the prop-

erty of independence of irrelevant alternatives (IIA) that is commonly criticized as

too strong and lacking experimental evidence. We conclude that any rule violating

IIA necessarily violates decomposability.

Having established this result, we turn to a more general setting of a richer space of

outcomes. For example, an action can generate a stochastic reward, a stream of pay-

o�s, or a reward that depends on an unknown state. All these cases can be captured

by allowing outcomes to be elements of an abstract outcome space. Importantly, we

assume that this outcome space is endowed with a binary operation corresponding to

combining outcomes of unrelated actions. For example, combining stochastic rewards

can correspond to the convolution of reward distributions. The notion of decompos-

ability of a choice rule extends naturally by replacing the summation of numerical

outcomes with their composition via this binary operation.
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In this general setting, our second main result demonstrates that a sophisticated

decision maker, whose behavior satis�es decomposability, behaves as if she were driven

by a utility over outcomes. Namely, there is a canonical way to assign a utility to each

element of the outcome space so that any decomposable rule is multinomial logit with

respect to these canonical utilities. Furthermore, this utility is additive with respect

to combining unrelated outcomes using the associated binary operation.

We characterize the functional form of the canonical utility representation for

particular outcome spaces. For example, the canonical utility for Gaussian stochas-

tic rewards is the mean-variance utility commonly used to model risk-aversion. For

rewards depending on an unknown state, we recover the standard expected utility rep-

resentation. Hence, also in this more general setting, we obtain utility maximization

without any rationality assumptions beyond decomposability.

Decomposability only requires that unrelated decisions are perceived and taken as

unrelated and makes no assumptions about related decisions.2 Although this assump-

tion is natural in many settings, real people's behavior satis�es it only approximately

at best. Indeed, the theoretical and experimental literature on ambiguity aversion

describes the hedging phenomenon, which implies that combining unrelated choices

may alter behavior; see, e.g., Azrieli, Chambers, and Healy (2018).

Our third main result is a robustness check that demonstrates that any choice

rule that is approximately decomposable must be close to multinomial logit. This

result is quantitative, i.e., we get an explicit bound on how close the behavior is to a

multinomial logit based on how close it is to satisfying decomposability.

1.1 Related literature

Multinomial logit is a ubiquitous model of randomness in a variety of �elds: eco-

nomics, psychology, statistics, machine learning, and statistical mechanics.

Multinomial logit was proposed by Luce (1959) to model discrete choice behavior

in experimental psychology and then popularized in economics by McFadden (1974);

see McFadden (2001) for a history of ideas behind multinomial logit and Train (2009);

Anderson, De Palma, and Thisse (1992) for a general economic perspective on stochas-

tic choice models. The early popularity of multinomial logit in economics was driven

2Nevertheless, widely documented narrow choice-bracketing indicates that even related decisions

are often treated by decision makers as if they were unrelated (see, e.g., Barberis et al., 2006).
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by the fact that it can be micro-founded as a random-utility model with shocks

following the Gumbel distribution (Luce and Suppes, 1965), and because of its conve-

nience both for applied econometrics and theory; it gives explicit formulas for choice

probabilities and welfare whereas other random utility models require Monte Carlo

methods. Multinomial logit is also at the heart of the quantal response equilibrium,

a generalization of the Nash equilibrium for error-prone decision-makers (McKelvey

and Palfrey, 1995).

According to Luce (1959), a choice rule exhibits independence of irrelevant alter-

natives (IIA) if the relative probabilities for a subset of alternatives do not depend on

the presence of other alternatives in the choice set. Luce (1959) demonstrated that

any behavior satisfying IIA can be generated by multinomial logit for some choice of

utilities. In our setting�as in the analysis of random utilities�the scale of utilities

is given. For a given scale, IIA implies that the probability of an alternative must be

proportional to some �xed function of its utility. Multinomial logit corresponds to

the exponential function but IIA is also compatible with any other.

The work of Cerreia-Vioglio, Maccheroni, Marinacci, and Rustichini (2021b) is

the closest to ours. They obtain the �rst characterization of multinomial logit for a

given utility-scale. The characterization augments IIA by several other axioms to pin

down the exponential dependence. The key insight is to characterize the whole one-

parametric family of multinomial logit rules, rather than considering multinomial

logit for a particular parameter. The additional axioms relate the behavior of the

stochastic choice rule for di�erent noise levels and imply the multiplicative property of

the exponent. Cerreia-Vioglio, Maccheroni, Marinacci, and Rustichini (2022) develop

these ideas further and characterize a dynamic version of multinomial logit where the

noise level can depend on the timing of the decision, thus relating static choice models

to neuro-economic drift-di�usion models. IIA underpins both results; its rationality

foundations are discussed by Cerreia-Vioglio, Lindberg, Maccheroni, Marinacci, and

Rustichini (2021a).

Our characterization of multinomial logit relies on decomposability instead of

IIA. One can think of decomposability as independence of irrelevant sub-decisions

rather than alternatives, intuitively a less demanding and more natural requirement

than IIA, which is commonly criticized as unrealistic. Indeed, the red bus/blue bus

thought experiment by Debreu (1960) indicates that IIA is problematic, especially

if alternatives are substitutes, and this conclusion is supported by vast empirical
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evidence (e.g., Becker, Degroot, and Marschak, 1963; McFadden, Tye, and Train,

1977). Various generalizations of multinomial logit can capture non-IIA behaviors:

e.g., Gul, Natenzon, and Pesendorfer (2014) characterize the so-called attribute rules

related to nested logit, Saito (2018) obtains the �rst axiomatization for mixed logit,

and Echenique, Saito, and Tserenjigmid (2018) characterize a version of multinomial

logit incorporating alternatives' priorities. Similarly to Luce (1959), the scale of

utilities in these results is not �xed.

Mat¥jka and McKay (2015) develop a model combining choice with a given utility-

scale and the rational-inattention framework of Sims (2003). They demonstrate

that multinomial logit captures the behavior of a utility-maximizing individual with

entropy-based attention cost. Woodford (2014) and Mattsson and Weibull (2002) de-

rive related results for binary choices and costly e�ort, respectively. Steiner, Stewart,

and Mat¥jka (2017) obtain an entropy-cost characterization of dynamic logit; see also

Fudenberg and Strzalecki (2015). The result of Mat¥jka and McKay (2015) supports

the conclusion of Camara (2022) that cognitive costs force decision-makers to split

problems into unrelated sub-problems whenever possible.

Multinomial logit is known as the Maxwell-Boltzmann or the Gibbs distribution

in statistical mechanics and information theory. The result of Mat¥jka and McKay

(2015) is related to the well-known fact that multinomial logit maximizes the Shan-

non entropy over all distributions with �xed mean utility (Shannon, 1948, 1959). The

entropy-based derivation is close to Boltzmann's original informal argument that, for

a system in thermodynamic equilibrium, the distribution of micro-states must be as

uniform as the law of conservation of energy permits. Other informal derivations of

the Gibbs distribution use speci�c properties of physical systems. For example, Lan-

dau and Lifshitz (1951) o�er a general argument for Hamiltonian systems relying on

Noether's characterization of their continuous symmetries, and Feynman, Leighton,

and Sands (2011) discuss ideal gases. The Hammersley-Cli�ord Theorem (see, e.g.,

Besag, 1974) characterizes the Gibbs distribution for lattice models of statistical me-

chanics by the Markov property, which shares some similarity to IIA.

Our notion of decomposability has some similarity to separability in dynamic

choice models. Chambers, Masatlioglu, and Turansick (2021) consider the choice

behavior of two agents (or of a single agent over two periods) and study its separability,

i.e., whether a joint distribution over choices is compatible with the existence of a

single distribution over utility pairs; see also Frick, Iijima, and Strzalecki (2019);
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Li (2021); Kashaev, Gauthier, and Aguiar (2023) for multi-period dynamic random

utility models.

2 Model

We consider a single decision-maker and model her behavior across various decisions.

Let A be a universal set of possible actions the decision maker could take. We assume

that this set is non-empty and closed under the operation of forming ordered pairs.

I.e., if a1, a2 P A then the pair pa1, a2q is also an element of A. For example, if a1 is

the action of buying a certain cereal and a2 is the action of wearing a certain shirt,

then pa1, a2q is the action of doing both. Note that this condition implies that A is

in�nite.

The set of possible outcomes of a decision is denoted by O. A single decision

instance is represented by a menu pA, oq, where A Ă A is a �nite set of possible

actions and o : A Ñ O assigns an outcome to each action. The outcome of an action

encapsulates all the information about this action relevant to the decision-maker.

We �rst formalize the model and discuss the results for O “ R. In this case,

a menu is simply a one-player game. This benchmark outcome space can be used

to model a decision-maker who compares actions by a single number, such as their

monetary reward or cost. General outcome spaces O are discussed in �4.

We display a menu by showing each action's outcome below it. For example,

pA, oq “

"

bus

3.14

train

´17

*

is a menu with two actions, choosing a bus or a train, with the former having a

monetary reward of 3.14 and the latter having a reward of ´17.

Let M be the collection of all menus. In other words, M consists of all pairs

pA, oq where A is a �nite subset of A and o is a function from A to O. The richness

of M distinguishes our approach from the standard stochastic choice setting in which

menus are subsets of some �xed �nite set of alternatives. Moreover, in our setting,

the same action can have di�erent outcomes in di�erent menus.

A stochastic choice rule is a map Φ that assigns to each menu pA, oq P M a

probability distribution over A. We denote by ΦpA, oqa the probability that ΦpA, oq

assigns to a P A. We think of Φ as describing or predicting the choices of a single
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decision-maker across di�erent situations. Alternatively, a stochastic choice rule can

be thought of as a solution concept for one-player games.

We consider several properties of stochastic choice rules. The �rst one is neutrality.

Neutrality captures a sense in which the decision-maker's choice is driven by the

outcomes rather than the names of actions.

Axiom 1 (Neutrality). A rule Φ is neutral if for any menu pA, oq in M and any

a, a1 P A such that opaq “ opa1q it holds that ΦpA, oqa “ ΦpA, oqa1.

That is, a rule Φ is neutral if actions in the same menu sharing the same outcome

are chosen with the same probability. Note that this axiom does not impose any

constraints across menus, but only within a given menu, and only if there are any

actions that share the same outcome.

To introduce our main axiom, decomposability, we will need an operation of com-

bining two unrelated choices into one. Given two menus pA1, o1q and pA2, o2q, we

de�ne their product pA, oq “ pA1, o1q b pA2, o2q by

A “ A1 ˆ A2 and opa1, a2q “ o1pa1q ` o2pa2q. (1)

For example, suppose that pA1, o1q with A1 “ ta, bu is a choice between two cereals

at a supermarket and pA2, o2q with A2 “ tp, q, ru is a choice between job o�ers. Then

the product menu pA, oq “ pA1, o1q b pA2, o2q represents a choice of cereal and a job

o�er. The set of actions A “ tpa, pq, pa, qq, pa, rq, pb, pq, pb, qq, pb, rqu consists of all

pairs of choices from A1 and A2. The outcome de�ned by o “ o1 ` o2 captures no

interaction between the two dimensions of the decision: under pA, oq, the choice of

cereal does not a�ect the decision maker's rewards for job o�ers.

Decomposability concerns a rule's prediction for product menus.

Axiom 2 (Decomposability). A rule Φ is decomposable if for all menus pA1, o1q, pA2, o2q P

M and their product pA, oq, it holds that

ΦpA, oqpa1,a2q “ ΦpA1, o1qa1 ¨ ΦpA2, o2qa2 (2)

for all pa1, a2q P A.

Decomposability means that, for product menus, the predicted distribution is

independent across the two dimensions. Moreover, in each dimension, the prediction is
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the same as when that decision is made in isolation. In the cereal and job o�er example

above, a rule that satis�es decomposability would predict that the choice of cereal

would be independent of the choice of job o�er: Observing one would not change the

prediction of the other. Furthermore, the probabilities that di�erent cereals are chosen

are the same as they would be if the menu included the cereals only. For example,

the decomposability of Φ would imply that ΦpA, oqpa,pq “ ΦpA1, o1qa ¨ΦpA2, o2qp: The

probability of choosing cereal a and job o�er p from the product menu is the product

of their probabilities in the two menus.

Note that the product menu is well-de�ned even for pA1, o1q and pA2, o2q repre-

senting related choices such as choosing a shirt and choosing a tie. In this case, the

combined decision does not correspond to the product menu pA1, o1qbpA2, o2q, which

represents a hypothetical situation where these two choices are combined as if they

were unrelated. The decomposability axiom only restricts the behavior of the indi-

vidual in such a hypothetical situation and does not constrain the rule's behavior on

menus that are not products.

If we interpret outcomes as monetary rewards or costs, decomposability captures

a sense in which behavior exhibits no wealth e�ects. This is a strong assumption,

though commonly made. In our model, it originates from the additive way in which

outcomes in a product menu are de�ned (2). We go beyond additivity in �4, and now

continue with the baseline model.

Some of our results require a mild regularity assumption. For a �xed set of ac-

tions A, we say that a series of menus pA, onq converges to pA, oq if limn onpaq “ opaq

for all a P A.

Axiom 3 (Continuity). A rule Φ is continuous if for any sequence of menus pA, onq

from M converging to pA, oq, we have limnΦpA, onqa “ ΦpA, oqa for all a P A.

Alternatively put, continuity stipulates that very small changes in the outcomes

result in very small changes in choice probabilities.

3 Decomposable Rules for O “ R

The main question asked by this paper is: what are the implications of decompos-

ability? Suppose that a decision maker follows a rule Φ, and that an analyst can

10



observe the choice probabilities on some �nite collection of menus. Without any fur-

ther assumptions on Φ, the analyst cannot predict choice probabilities on unobserved

menus. But assuming decomposability (and, say, neutrality and continuity) these

observations do have some implications out of sample. What are these implications?

For example, suppose that an analyst can observe choice probabilities for the

single menu

pA, oq “

!a1
1

a2
5

)

,

and that these are ΦpA, oqa1 “ 1{3 and ΦpA, oqa2 “ 2{3. Suppose also that Φ satis�es

decomposability, neutrality and continuity. How does this constrain ΦpB, rq, where

pB, rq “

"

b1
3

b2
17

b3
18

*

?

Clearly, neutrality and continuity alone yield no constraints for ΦpB, rq. And neither

does decomposability, since pB, rq is not a product menu. A priori, even the combi-

nation of these axioms does not seem to imply any constraints. Intuitively, we can

de�ne a rule on such indecomposable menus arbitrarily and extend it to all product

menus by decomposability.

Surprisingly, this intuition is wrong. Indeed, the combination of our axioms has

strong implications: under these axioms ΦpB, rq is completely determined by ΦpA, oq.3

This is a consequence of Theorem 1, which shows that any rule satisfying our axioms

must belong to a one-parameter family.

The multinomial logit rule with parameter β P R is given by

MNLβ
pA, oqa “

exppβ ¨ opaqq
ř

bPA exppβ ¨ opbqq

for every menu pA, oq P M. One can easily verify that multinomial logit satis�es

neutrality, decomposability, and continuity.

Theorem 1. Let Φ be a neutral, decomposable, continuous stochastic choice rule

for the outcome space O “ R. Then Φ coincides with a multinomial logit rule for

some β P R.

The constant β in the multinomial logit rule is pinned down by the choice distri-

bution on any non-trivial menu, i.e., on any menu pA, oq P M where o is not constant.

3A calculation yields that ΦpB, rqb1 « 4%, ΦpB, rqb2 « 44% and ΦpB, rqb3 « 52%.
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In other words, the behavior of a rule on any non-trivial menu pins down the behavior

on all menus. After discussing other implications of the theorem, we will explain how

two weak axioms�decomposability and neutrality�become strong when combined.

Recall that the family of independent additive random utility (IARU) models used

to model the behavior of a rational utility-maximizing decision-maker is given by

IARUpA, oqa “ P
”

opaq ` εa “ max
bPA

opbq ` εb

ı

,

where opaq is interpreted as the utility of action a and εa are independent shocks

with a continuous distribution F . For β ą 0, multinomial logit can equivalently be

de�ned as an independent additive random utility model corresponding to the Gumbel

distribution F pxq “ expp´ expp´β ¨ xqq. Note that�although the outcome opaq P R
was interpreted as the reward or cost of an action a�we did not a priori assume

that the decision-maker is engaged in any sort of utility maximization. Curiously, the

theorem implies that a decision-maker whose choice rule Φ satis�es the assumptions

behaves as if she was a stochastic utility-maximizer (the case of β ą 0) or disutility-

minimizer (β ă 0). The theorem also justi�es the interpretation of decomposability

and neutrality as rationality requirements. We see that these requirements imply

rationality in the usual sense of utility maximization but are stronger than that since

only multinomial logit is decomposable among all IARU.

By Theorem 1, a general IARU violates decomposability by inducing correlation

between unrelated choices. We illustrate this phenomenon for the popular probit rule.

Example 1 (Probit). The probit rule corresponds to the standard Gaussian distribu-

tion F “ Np0, 1q. We examine its outcomes for a menu

pB, rq “

"

b0
0

b1
1

*

(3)

and its �square�

pC, sq “ pB, rq b pB, rq “

"

pb0, b0q

0

pb0, b1q

1

pb1, b0q

1

pb1, b1q

2

*

.

We get ProbitpB, rqb1 » 0.760 and ProbitpC, sqpb1,b1q » 0.617. Since 0.617 ą 0.762 “

0.58, Probit violates decomposability, putting more weight on the maximal-utility

action in pC, sq than a decomposable rule coinciding with probit on pB, rq would put.

Summing Gaussian shocks results in a shock with twice the variance, and so we might
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anticipate that keeping the same shock variance in the product menu leads to less

randomness than required for decomposability. Theorem 1 implies that even if we

made the variance or even the shock distribution a function of the menu, we would

not achieve decomposability unless the resulting choice probabilities correspond to

Gumbel-distributed shocks with a parameter independent of the menu.

Theorem 1 is proved in Appendix A, which also contains a family of related char-

acterizations.4 To illustrate the mechanics behind Theorem 1, we show how knowing

a decomposable neutral rule on a single menu can pin it down for all other menus.

Assume we know ΦpB, rq for pB, rq from (3), and assume that both b0 and b1 are

chosen with positive probability. Our goal is to show how this knowledge restricts

ΦpA, oq for

pA, oq “

"

a1
´17

a2
´17

a3
42

*

.

By neutrality ΦpA, oqa1 “ ΦpA, oqa2 . We will demonstrate that ΦpA, oqa2 and ΦpA, oqa3

satisfy a certain identity. Consider the product of pA, oq with the n-fold product of

pB, rq:

pA, oq b pB, rq b pB, rq b ¨ ¨ ¨ b pB, rq
looooooooooooooooomooooooooooooooooon

n times

, (4)

where n “ opa3q ´ opa2q “ 59. In this menu, the two actions pa3, b0, b0, . . . , b0q and

pa2, b1, b1, . . . , b1q have the same outcome, and thus have the same probability by

neutrality. Therefore, decomposability implies

ΦpA, oqa3 ¨ pΦpB, rqb0q
59

“ ΦpA, oqa2 ¨ pΦpB, rqb1q
59.

Combined with the identities ΦpA, oqa1 “ ΦpA, oqa2 and ΦpA, oqa1 ` ΦpA, oqa2 `

ΦpA, oqa3 “ 1, this equation pins down ΦpA, oq, which is therefore determined by

ΦpB, rq. Since |B| “ 2, we can always choose β P R such that ΦpB, rq “ MNLβ
pB, rq.

Since multinomial logit also satis�es the same identities, we conclude that ΦpA, oq “

MNLβ
pA, oq.

We now discuss the role of the technical continuity requirement in Theorem 1.

To argue that ΦpB, rq “ MNLpB, rq implies ΦpA, oq “ MNLpA, oq, we did not in-

voke continuity. Indeed, if we focus on choice rules de�ned only on menus pA, oq

with integer-valued or rational-valued outcomes o, the continuity assumption can be

4We are grateful to Gabriel Carroll and Marcin P�eski who suggested the current proof strategy,

simplifying our original proof considerably.
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dropped; see Propositions 2 and 3 in Appendix A. In this setting, in addition to

multinomial logit, we also get the two limiting rules obtained by letting β go to `8

or ´8. These rules denoted by MNL`8 and MNL´8 output the uniform distribution

over the highest-reward or lowest-cost actions

MNL`8
pA, oqa “

$

&

%

| argmaxbPA opbq|´1, a P argmaxbPA opbq

0, otherwise

and

MNL´8
pA, oqa “ MNL`8

pA,´oqa.

These rules do not withstand the continuity test and thus do not appear in Theorem 1.

Another way to exclude these rules is to require positivity, which postulates that every

action is chosen with positive probability.

Axiom 4 (Positivity). A rule Φ is positive if ΦpA, oqa ą 0 for all menus pA, oq P M
and actions a P A.

Replacing continuity with positivity results in pathological non-measurable ev-

erywhere discontinuous rules, in addition to multinomial logit; see discussion in �4.2

below. Characterizing decomposable neutral rules lacking both positivity and conti-

nuity remains an open question. We conjecture that no such rule is measurable unless

it coincides with some multinomial logit rule.

4 Decomposable Rules for General Outcome Spaces O

So far, we have focused on the outcome space O “ R capturing a decision-maker

choosing actions based on simple numerical outcomes such as monetary rewards or

costs. It turns out that neither the one-dimensional structure of the outcome space

nor the additive structure of unrelated outcomes is critical for our analysis.

Here, we extend the analysis to a more sophisticated decision-maker whose action

choices are driven by outcomes in a general space O. For example, O “ R2 can

be used to model a decision-maker whose choices are a�ected by two numbers, e.g.,

reward and the cost of the chosen action, utility today and tomorrow, or utilities in

two di�erent states of nature. The set O “ tbounded continuous f : Rě0 Ñ Ru can

represent a decision-maker who cares about in�nite payo� streams. A decision whose
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actions result in a Gaussian lottery with known mean and standard deviation can be

modeled using O “ R ˆ Rě0.

To capture the aforementioned examples, we will impose minimal assumptions

on O. The notions of a menu pA, oq, a collection of menus M, and a stochastic choice

rule Φ extended straightforwardly. Similarly, the axioms�neutrality, positivity, and

continuity (for O endowed with a topology)�need no modi�cations.

To motivate the extension of decomposability to a general outcome space, we

consider the following example. Let O “ R ˆ Rě0, where the �rst component is

interpreted as the mean and the second component as the standard deviation of a

stochastic Gaussian monetary reward. In the following menu, the decision-maker

compares two investment decisions that di�er substantially by expected rewards and,

even more dramatically, by their standard deviation

pA, oq “

"

bonds
`

5
2

˘

crypto
`

20
100

˘

*

. (5)

We assume that O is endowed with a binary operation �˚� corresponding to com-

bining outcomes of actions with stochastically independent outcomes. For example,

consider pA, oq from (5) and suppose that there is another investment opportunity

with rewards that are independent of those from A, say, a lottery ticket with out-

come
`

´0.01
0.05

˘

. We can construct a new menu where the decision-maker compares two

options: (i) buying the lottery ticket and investing in bonds or (ii) buying the ticket

and investing in crypto:
$

&

%

plottery, bondsq
´

´0.01`5?
0.052`0.12

¯

plottery, cryptoq
´

´0.01`20?
0.052`1002

¯

,

.

-

.

The outcomes are de�ned this way since the sum of two independent random variables

with mean m1 and m2 and standard deviations σ1 and σ2 has mean m1 ` m2 and

standard deviation
a

σ2
1 ` σ2

2. Accordingly, for O representing the mean/standard-

deviation pairs, the binary operation is naturally de�ned as follows

ˆ

m1

σ1

˙

˚

ˆ

m2

σ2

˙

“

ˆ

m1 ` m2
a

σ2
1 ` σ2

2

˙

. (6)

For a general outcome space O, we assume that it is endowed with a binary

operation ˚ corresponding to combining outcomes of unrelated actions. The existence
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of an operation ˚ is justi�ed by the interpretation of the space of outcomes O. Indeed,

an outcome of an action captures all information about it relevant to the decision-

maker. Every action in every menu, including combined ones, must be assigned

an outcome. An outcome assigned to a combination of unrelated actions must be a

function of their outcomes as the latter capture all relevant information. This function

O ˆ O Ñ O is the operation ˚.

The only requirement that we impose on ˚ is the existence of an irrelevant

outcome: there exists e P O such that

e ˚ x “ x ˚ e “ x

for any x P O. The decision-maker does not care about an action a having outcome

e in the sense that combining a with any other action b with outcome x does not

change the decision-maker's perception of b. Abusing notation, we call the pair pO, ˚q,

satisfying this requirement an outcome space in what follows.

Our analysis from �3 pertains to the outcome space pO, ˚q “ pR,`q, where 0 is

the irrelevant outcome. More generally, any group pO, ˚q has the identity element e

such that e ˚ x “ x ˚ e “ x, and thus any group can serve as an outcome space.

The operation ˚ de�ned in (6) also admits an irrelevant outcome (even though in this

case pO, ˚q is not a group), and is also commutative and associative. However, we

assume neither commutativity nor associativity.

Since ˚ corresponds to combining outcomes of unrelated actions, the de�nition of

a product menu extends straightforwardly. Given two menus pA1, o1q and pA2, o2q,

we de�ne their product pA, oq “ pA1, o1q b pA2, o2q by

A “ A1 ˆ A2, and opa1, a2q “ opa1q ˚ opa2q.

As in the case of pO, ˚q “ pR,`q, the product menu corresponds to combining the

two unrelated choices (or as if they were unrelated).

Once the product menus are de�ned, the requirement of decomposability (Ax-

iom 2) applies to choice rules with arbitrary outcome spaces pO, ˚q. Indeed, consider

a rule Φ de�ned on a collection M of menus. This rule is decomposable if

Φ
`

pA1, o1q b pA2, o2q
˘

pa1,a2q
“ ΦpA1, o1qa1 ¨ ΦpA2, o2qa2

for all pA1, o1q, pA2, o2q P M.
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In the context of the example of O “ R ˆ Rě0 above with the operation (6),

decomposability means that the choice between bonds and crypto is una�ected by

the presence of a lottery, and thus captures a certain indi�erence to wealth e�ects

or background risk. Of course, whether this assumption is justi�ed depends on the

context.

As another example of pO, ˚q consider the following setting of choice under ambi-

guity. Let Θ be a �nite set of states. An outcome x is a function x : Θ Ñ R, specifying
reward or cost for each of the states, so that x is a Savage act and O “ RΘ.

The decision-maker is ambiguous about the state θ P Θ and so she may take into

account all the possible values xθ. For a given state, similarly to �3, monetary rewards

or costs are assumed to be additive over unrelated actions. Thus the operation ˚ is

component-wise addition, or simply addition in RΘ. Here, decomposability captures

the idea that there is a true (but unknown) state, which is �xed across all decision

problem, and so the decision maker compares rewards state by state.

Before stating our main result of this section we will need an additional de�nition.

A function u : O Ñ R is called a utility representation of the outcome space pO, ˚q

if

ups ˚ tq “ upsq ` uptq for all s, t P O. (7)

In other words, a utility representation assigns a numerical value to each outcome so

that combining outcomes of unrelated actions corresponds to summing their utilities.

For example, if pO, ˚q “ pR,`q, a linear function uptq “ β ¨t is a utility representation;

if pO, ˚q is the Gaussian outcome space (6), a function upm,σq “ β ¨m`γ ¨σ2 provides

a utility representation; and if pO, ˚q “ pRΘ,`q as in the choice under ambiguity

example, upxq “
ř

θ qθ ¨ xθ is a utility representation. As discussed below, these are

all continuous utility representations for these outcome spaces.

Our usage of the term utility representation for functions u : O Ñ R satisfying (7)

can be motivated by the well-established connection between cardinal utility values

and separability: since we think of s ˚ t as a combination of unrelated outcomes s and

t, the identity (7) is a separability condition. This interpretation relates our analysis

to the characterization of separable utility by Debreu (1959), who shows that choice

independence across dimensions pins down a separable utility (uniquely up to a�ne

transformations).

In a similar vein, our second main result relates decomposability and utility rep-

resentations.
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Theorem 2. Let Φ be a neutral, decomposable, positive stochastic choice rule for an

outcome space pO, ˚q. Then, there exists a utility representation u of pO, ˚q such that

ΦpA, oqa “

exp
´

u
`

opaq
˘

¯

ř

bPA exp
´

u
`

opbq
˘

¯ (8)

for any menu pA, oq P M. The utility representation u is continuous if and only if Φ

is continuous.

Informally, Theorem 2 says that there is a canonical way to assign utilities to

elements of the outcome space so that choices are governed by a multinomial logit

rule with respect to these utilities; moreover, summing these utilities corresponds to

combining unrelated actions. The constant β in the multinomial logit is normalized

to one, as any other constant can always be absorbed by u.

We conclude that, regardless of how unsophisticated the decision-maker is, she

behaves like a rational stochastic utility maximizer with a very particular form of

stochasticity leading to the multinomial logit distribution. This conclusion can be

surprising as we assumed neither that the decision maker is a utility maximizer nor

that her choices are driven by a numerical characteristic of actions.

Theorem 2 also implies that a sophisticated decision-maker using O with non-

commutative or non-associative operation ˚ behaves as if the composition opera-

tion was commutative and associative. Indeed, any utility representation u of pO, ˚q

satis�es upx ˚ yq “ upxq ` upyq “ upy ˚ xq, even if x ˚ y ‰ y ˚ x, and similarly

upx ˚ py ˚ zqq “ uppx ˚ yq ˚ zqq.5 Hence, the non-commutative or non-associative di-

mensions of pO, ˚q will all be in the kernel of the utility representation and will not

a�ect decision-making.

Theorem 2 is proved in Appendix B. The idea is to extract u from Φ as follows. For

each element x P O, consider a binary menu pA, oxq P M with A “ ta, bu, oxpaq “ e

and opbq “ x. We de�ne u by

upxq “ ln

ˆ

ΦpA, oxqb

1 ´ ΦpA, oxqb

˙

(9)

5For example, if O is the set of invertible 2-by-2 matrices and ˚ is matrix multiplication, then

the utility representation upxq “ log |detx| satis�es upx ˚ yq “ upy ˚ xq even though in general

x ˚ y ‰ y ˚ x.
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so that Φ is given by the multinomial logit formula (8) on binary menus pA, oxq. By

decomposability of Φ on binary menus, u satis�es the generalized Cauchy equation (7),

i.e., u is a utility representation. The multinomial logit formula (8) is extended from

binary menus to all menus by decomposability and neutrality. Positivity of Φ in

Theorem 2 ensures that u given by (9) is well-de�ned. Dropping positivity is an open

problem requiring a new proof technique already for the case of pO, ˚q “ pR2,`q.

4.1 Applications

Theorem 2 implies that to understand decomposable stochastic choice for a general

outcome space pO, ˚q, it su�ces to understand the outcome space's utility represen-

tations. Thus, Theorem 2 can be re�ned for those outcome spaces O, where the set

of all utility representations u admits a simple characterization. Describing all u boils

down to understanding solutions to the generalized Cauchy equation (7)

upx ˚ yq “ upxq ` upyq.

We will see a family of economically-relevant examples below.

The �rst few examples correspond to the case of a linear space O, equipped with

the operation of addition, e.g., pO, ˚q “ pRd,`q. For such O, the Cauchy equation

becomes

upx ` yq “ upxq ` upyq. (10)

Lemma 1. Suppose that the outcome space pO, ˚q is a Banach space equipped with

the operation of addition. Then, any utility representation u : O Ñ R continuous at

some x0 P O is a linear map continuous at all x P O. Any utility representation

discontinuous at some x0 is discontinuous everywhere and non-measurable.

Measurability in Lemma 1 is understood in the usual sense, i.e., with respect to

the Borel σ-algebra of O. This lemma is a folk result in the theory of functional

equations. For pO, ˚q “ pR,`q, it dates back to Cauchy. For a general Banach space

pO, ˚q see, e.g., (Kuczma, 2009; Jung, 2011).

4.2 Choice driven by monetary rewards

As a �rst simple example, consider the familiar case of a decision maker comparing

actions by their monetary rewards or costs, i.e., pO, ˚q “ pR,`q as in �3. By Lemma 1,
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any continuous utility representation u : R Ñ R is linear, i.e., upxq “ β ¨ x for some

β P R. Moreover, it su�ces to require continuity at a single point x0.

Combining this insight with Theorem 2, we get that any continuous decomposable

positive rule Φ is a multinomial logit rule MNLβ. In other words, we obtain the

conclusion of Theorem 1 under an additional assumption of positivity. While the

result is weaker because of the redundant positivity assumption, this proof technique

highlights that we only need to require continuity at a single menu (with at least two

actions).

By Lemma 1, utility representations discontinuous at one point are necessarily

discontinuous everywhere and are moreover non-measurable. We conclude that so

are discontinuous decomposable positive choice rules. Such rules can be obtained

using discontinuous solutions to the Cauchy equation. Similarly to the existence of

a discontinuous solution to (10), this construction relies on Hamel bases and thus

requires an explicit use of the axiom of choice. To conclude, discontinuous rules are

not more than a technical curiosity.

4.3 Choice under ambiguity

Recall again the example in which Θ is a �nite set of states, pO, ˚q “ pRΘ,`q, and

each x P O is an act assigning a monetary reward in each state.

By Lemma 1, any continuous utility representation u : RΘ Ñ R is linear, and so

can be written as

upxq “ β ¨
ÿ

θPΘ

pθ ¨ p´1q
σθ ¨ xθ

for some β ě 0, σ : Θ Ñ t0, 1u, and p P ∆pΘq, where ∆pΘq denotes the set of

probability distributions over Θ. The distribution p can be interpreted as the decision-

maker's prior over the states, and σθ determines whether the component xθ is treated

as a reward or a cost.

By Theorem 2, any decision maker whose choices follow a continuous decompos-

able positive rule Φ, behaves as a stochastic expected utility maximizer with some

prior p over the set of states and Gumbel-distributed shocks:

ΦpA, oqa “

exp
´

β ¨
ř

θPΘ pθ ¨ p´1qσθ ¨ opaqθ

¯

ř

bPA exp
´

β ¨
ř

θPΘ pθ ¨ p´1qσθ ¨ opbqθ

¯ . (11)
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To rule out the situation where some components of x are treated as rewards and some

as costs, one can impose a simple monotonicity requirement. If the choice probability

is non-decreasing in the θ-component of the outcome, one can assume σθ “ 0 in (11).

Moreover, it su�ces to require this monotonicity at a single menu with at least two

actions.

4.4 Intertemporal choice

Consider a decision-maker who chooses an action taking into account the stream of

payo�s x : T Ñ R that it generates, where T “ Rě0 is set of time periods. We assume

that these payo�s x are continuous and stop after some point in time. Hence, the

space of outcomes O is the set of all continuous and compactly-supported functions

x : T Ñ R. We equip O with the operation of addition and the topology induced by

the sup-norm. By the Riesz representation theorem (see Folland, 1999, Theorem 7.17),

any continuous linear functional onO can be represented as integration against a �nite

signed measure µ on T . Lemma 1 implies that any continuous utility representation

u of pO,`q has the following form

upxq “

ż

T

xptq dµptq

for some �nite signed measure µ on T . Thus, by Theorem 2, any decision maker

whose choices follow a continuous decomposable positive rule Φ is given by

ΦpA, oqa “

exp
´

ş

T
opaqt dµptq

¯

ř

bPA exp
´

ş

T
opbqt dµptq

¯ . (12)

As above, an additional monotonicity assumption yields that µ is a positive measure.

4.5 Risk-sensitive choice

Now, suppose that the actions generate stochastic payo�s. In the simple case dis-

cussed above, outcomes are Gaussian, and so are characterized by the mean m and

the standard deviation σ ě 0. Thus the outcome space is O “ R ˆ Rě0 with the

operation ˚ de�ned in (6). It is easy to see that any continuous utility representation

u : R ˆ Rě0 Ñ R is a mean-variance utility

upm,σq “ γ1 ¨ m ` γ2 ¨ σ2. (13)
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Indeed, any continuous utility representation u de�nes a continuous solution v to the

additive Cauchy equation (10) by

vpy1, y2q “ u
`

y1,
a

y2 ` |y2|
˘

´ u
`

0,
a

|y2|
˘

.

By Lemma 1, v is linear, and thus u has the desired form.

Theorem 2, implies that any continuous decomposable positive rule Φ is given by

ΦpA, oqa “

exp
´

γ1 ¨ mpaq ` γ2 ¨ σpaq2
¯

ř

bPA exp
´

γ1 ¨ mpbq ` γ2 ¨ σpbq2
¯ . (14)

We next consider a setting with more general lotteries. Fix some n ě 0, and let O
be the set of all probability distributions on R with �nite n moments. The operation ˚

is convolution, which corresponds to summing independent random variables. The

topology is de�ned so that the n moments are continuous functionals on O: the

distance between two distributions x and y is given by the weighted total variation

distance

dpx, yq “

ż

R
p1 ` |t|qnd|x ´ y|ptq (15)

so that the k moments are continuous functionals on O. The following result is a

direct corollary of Mattner (2004).

Lemma 2. Let the outcome space pO, ˚q be the set of all probability distributions with

n ě 0 �nite moments, the operation of convolution, and topology induced by (15).

Then, any continuous utility representation u : O Ñ R has the following form

upxq “

n
ÿ

l“1

γlκlpxq, (16)

where κl is the l-th cumulant of x and γ1, . . . , γn are some �xed real numbers.

Cumulants are additive, i.e., κlpx ˚ yq “ κlpxq ` κlpyq, which is why representa-

tion (16) satis�es the generalized Cauchy equation (7). The �rst two cumulants are

the mean and the variance, and so (16) extends (13).6

6Recall that the cumulants of a distribution x are de�ned by the following formula

κlpxq “

ˆ

1

il
¨
dl

dαl
log

ż

R
exp

`

iαt
˘

dxptq

˙
ˇ

ˇ

ˇ

ˇ

α“0

,

where i is the imaginary unit.
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By Theorem 2, any continuous decomposable positive rule Φ has the following

form

ΦpA, oqa “

exp
´

řn
l“1 γlκlpopaqq

¯

ř

bPA exp
´

řn
l“1 γlκlpopbqq

¯ .

An interesting corollary of Lemma 2 is that in the case n “ 0, in which O “ ∆pRq

endowed with the total-variation distance, there are no continuous utility representa-

tions u : O Ñ R except for u ” 0. Thus, the only continuous decomposable positive

rules are those that pick an action uniformly at random.

4.6 Finite streams of prizes

We next consider an example of an outcome space with a non-commutative opera-

tion ˚. Let P be a set of prize types, and let O be the set of �nite streams of prizes.

Formally, O is the set of �nite sequences x “ px1, . . . , xnq with elements in P . The

operation ˚ is concatenation:

px1, . . . , xmq ˚ py1, . . . , ynq “ px1, . . . , xm, y1, . . . , ynq.

Note that this operation is not commutative: receiving the stream x and then y is

not the same as receiving y and then x.

In the context of this operation, exploring decomposability corresponds to study-

ing decision-makers whose choice probabilities are invariant to previously received

streams. A standard argument shows that every utility representation u : O Ñ R is

of the form

upz1, . . . , zkq “
ÿ

pPP

wppq ¨ |tl : zl “ pu|.

where w : P Ñ R is any function. In other words, we assign a value wppq to each

prize type p and de�ne the utility of a stream as the sum of values for each of the

prizes in the stream.

By Theorem 2, any decomposable positive rule Φ has the form

ΦpA, oqa “

exp
´

ř

pPP wppq ¨ |tl : opaql “ pu|

¯

ř

bPA exp
´

ř

pPP wppq ¨ |tl : opbql “ pu|

¯
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for some w : P Ñ R. This example highlights that in non-commutative cases, the

choice probabilities can only be driven by commutative components of O, which in

this case correspond to counting the number of appearances of each prize type in a

stream.

4.7 Matrices as outcomes

In this section, we discuss a mathematical example which does not admit a natu-

ral economic interpretation but nevertheless highlights an interesting application of

Theorem 2.

Suppose O is the set of all non-degenerate (i.e., invertible) nˆn matrices with the

operation ˚ given by the matrix product. The next lemma follows from Chamberlin

and Wolfe (1953).

Lemma 3. Let the outcome space pO, ˚q be the set of non-degenerate n ˆ n matri-

ces with the operation of multiplication. Then, any continuous utility representation

u : O Ñ R has the following form

upxq “ β ¨ ln
ˇ

ˇ detx
ˇ

ˇ (17)

for some β P R.

The determinant is multiplicative, i.e., detpx ˚ yq “ detpxq ¨ detpyq, and thus the

utility representation (17) satis�es (7). We conclude that any continuous decompos-

able positive rule Φ takes the form

ΦpA, oqa “

ˇ

ˇ det opaq
ˇ

ˇ

β

ř

bPA

ˇ

ˇ det opbq
ˇ

ˇ

β
.

5 Framing e�ects and approximate neutrality

Our neutrality axiom captures a weak sense in which outcomes, rather than action

labels, are what drives choice. In this section, we relax this assumption, allowing for

framing e�ects which a�ect choice probabilities even when there are no di�erences in

outcomes. We show that under an appropriate notion of approximate neutrality, our

results remain the same.

Fix an arbitrary outcome space O and consider a rule Φ de�ned on a collection

of menus M. We now formulate the approximate versions of our main axioms.
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Axiom 5 (Approximate Neutrality). A rule Φ is approximately neutral with pa-

rameter εneut ě 0 if for any menu pA, oq in M and any a, a1 P A such that opaq “ opa1q

it holds that ΦpA, oqa ď p1 ` εneutqΦpA, oqa1.

Approximate neutrality is a natural relaxation of neutrality which allows actions

with the same outcome to be chosen with di�erent probabilities, but limits the ratio

between them. For zero values of εneut we obtain the familiar requirement of exact

neutrality (Axiom 1).

The main result of this section shows that under decomposability, approximate

neutrality is the same as exact neutrality.

Proposition 1. For any outcome space pO, ˚q, every decomposable rule Φ satisfying

approximate neutrality with any parameter εneut ą 0 is neutral.

In other words, decomposability and approximate neutrality imply exact neutral-

ity.7 As a corollary, we can relax neutrality to approximate neutrality in Theorems 1

and 2 without altering the conclusion. Note that in the hypothesis of Proposition 1

there is no assumption that εneut is small. Moreover, the proof contained in Ap-

pendix C demonstrates that the same conclusion holds even for εneut that is allowed

to depend on the menu, as long as it grows sub-linearly with the size of the menu.

6 Approximate decomposability

Real decision-makers may violate exact decomposability. For example, the choice of

cereal and shirt may be negatively correlated because the cognitive e�ort required

to choose a cereal reduces the quality of the choice of shirt. In this section, we

relax decomposability in a similar way to our relaxation of neutrality in the previous

section. We explore the robustness of our results to approximate decomposability, and

show that when approximate decomposability holds, then so do approximate versions

of Theorems 1 and 2. The conclusions allow for approximate decomposability and

approximate neutrality simultaneously.

Axiom 6 (Approximate Decomposability). A rule Φ is approximately decompos-

able with parameter εdecomp ě 0 if for all menus pA1, o1q, pA2, o2q P M and their

7A similar phenomenon in the theory of functional equations is known as superstability (see, e.g.,

Jung, 2011, Chapter 10). An equation is superstable if an approximate solution is always exact.
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product pA, oq, it holds that

ΦpA, oqpa1,a2q ď p1 ` εdecompq ¨ ΦpA1, o1qa1 ¨ ΦpA2, o2qa2

ΦpA1, o1qa1 ¨ ΦpA2, o2qa2 ď p1 ` εdecompq ¨ ΦpA, oqpa1,a2q.

for all pa1, a2q P A.

6.1 Robustness for O “ R

Consider the benchmark case of �3, where the outcome space is O “ R with the

operation of addition.

A rule Φ on M is δ-close to a multinomial logit with parameter β P R if for any

menu pA, oq P M there is a function s : A Ñ r´δ, δs such that

ΦpA, oqa “
exp pβ ¨ opaq ` spaqq

ř

bPA exp pβ ¨ opbq ` spbqq
.

The utility shock s may depend on the menu pA, oq and can capture framing e�ects.

Theorem 3. Let Φ be a continuous stochastic choice rule for the outcome space O “

R satisfying approximate neutrality and approximate decomposability with parameters

εneut ě 0 and εdecomp ě 0, respectively. Then there exists a unique β P R such that Φ

is εdecomp-close to a multinomial logit rule with parameter β P R.

We see that rules satisfying our approximate axioms are close to those that satisfy

the exact ones, i.e., to multinomial logit. We note that the closeness of Φ to logit

does not depend on the approximation parameter in the neutrality axiom. This e�ect

has the same origin as in Proposition 1.

The theorem is proved in Appendix D. The idea is to consider an auxiliary rule

Υ de�ned by

ΥpA, oqa “ lim
nÑ8

n

b

ΦpA, oq
bn
pa,...,aq

,

where pA, oqbn denotes the product of pA, oq with itself n times. It turns out that

Υ satis�es exact decomposability and neutrality and is close to Φ by construction.

Thus Theorem 3 follows from applying the characterization of decomposable neutral

rules to Υ.
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6.2 Robusteness for general outcome spaces O

Theorem 2 for general outcome space O shows that decomposable positive neutral Φ

coincides with multinomial logit for some additive utility function u : O Ñ R. The

possibility to replace neutrality and decomposability with their approximate versions

is tightly related to the so-called Ulam stability of the Cauchy functional equation.

Consider the Cauchy equation for the outcome space pO, ˚q

upx ˚ yq “ upxq ` upyq for all x, y P O. (18)

Informally, the equation is stable if any approximate solution is close to the exact one.

Formally, consider ε ą 0 and suppose that there is δ ą 0 such that for any function

w satisfying
ˇ

ˇwpx ˚ yq ´ wpxq ` wpyq
ˇ

ˇ ď ε for all x, y P O. (19)

there is a solution u of (18) such that

|upxq ´ wpxq| ď δ for all x P O.

If such a pair pε, δq exists, equation (18) is called pε, δq-stable. If, for every δ ą 0,

there is an ε ą 0 such that the equation is pε, δq-stable, then we say that the equation

is Ulam stable. This is an upper-hemicontinuity-type condition for the set of solutions

to (19) as ε tends to zero.

We note that whether or not the Cauchy equation is stable is a property of the

space pO, ˚q. For example, O “ R with addition and, more generally, any Banach

space O are pε, εq-stable for any ε ą 0 as conjectured by Ulam and proved by Hyers

(1941); see a survey by Hyers and Rassias (1992) for other examples.

Similarly to the previous section, we say that a rule Φ is δ-close to multinomial

logit if there is a utility representation u : O Ñ R and, for any menu pA, oq P M,

there is a function s : A Ñ r´δ, δs such that

ΦpA, oqa “
exp

`

u
`

opaq
˘

` spaq
˘

ř

bPA exp
`

u
`

opbq
˘

` spbq
˘ .

We stress that u in this de�nition solves the exact Cauchy equation (18), not the

approximate one (19).

Theorem 4. Consider an outcome space pO, ˚q such that the Cauchy equation (18) is

Ulam stable. Then, for every δ ą 0 there exists an εdecomp ą 0 such that every positive,
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εneut-neutral, εdecomp-decomposable, stochastic choice rule Φ (with any εneut ě 0) is

δ-close to multinomial logit.

Theorem 4 is a particular case of a more general result relating δ to εdecomp; see

Theorem 5 in Appendix E.

Recall that the examples discussed in �4�ambiguous monetary rewards (11),

inter-temporal choice (12), and risk sensitive choice driven by mean and variance

of rewards (14)�correspond to a Banach space pO, ˚q. Combining Theorem 5 with

the result of Hyers (1941), we get that for any Banach space O, any positive εneut-

neutral εdecomp-decomposable Φ is
´

18 ¨ εdecomp ` 3 ¨ ε2decomp

¯

-close to multinomial

logit. Similarly to Theorem 3, this bound does not depend on the value of εneut.

Hyers (1941) also demonstrates that if an approximate solution w to the Cauchy

equation is continuous for at least one point, then it is close to a globally continuous

exact solution u. Thus, under an additional assumption of continuity of Φ, the utility

representation u is a continuous linear functional on O since such functionals exhaust

continuous solutions of the Cauchy equation on a Banach space. Consequently, the

functional forms for a rule Φ established in (11), (12), and (14) are robust to replacing

neutrality and decomposability with their approximate versions.

7 Conclusion

This paper explores a novel approach to stochastic choice and study decomposability

as our main assumption. We show that in very general settings, decision-makers who

satisfy decomposability choose using multinomial logit applied to a utility function.

An interesting direction for future research is to relax decomposability and only

require that in a product menu, the choice distribution has the same marginals as

in the component menus, but to drop the independence requirement; e.g., allow the

choice of shirts and cereals to be correlated, but require that the probability that a

particular shirt is chosen does not change when this is considered in conjunction with

a choice of cereal (see the marginality condition proposed by Chambers, Masatlioglu,

and Turansick, 2021). This relaxation allows for choice rules beyond multinomial

logit, such as mixed logit rule obtained via averaging multinomial logits with di�erent

parameters. We conjecture that there are no other neutral continuous rules satisfying

this condition.
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A Proof of Theorem 1 and Related Results for O Ă R

Recall that A is a �xed non-empty set of possible actions that is closed under the

operation of forming ordered pairs.8 For a subset of reals R Ă R, denote by MR the

collection of all menus pA, uq with A Ă A and u : A Ñ R. Apart from R “ R, we
will consider R equal to the set of integers Z or rational numbers Q. In other words,

MR is the set of all menus with the set of outcomes O “ R. We will say that Φ is a

stochastic choice rule with outcomes in R if it is de�ned for menus pA, uq P MR but

may not be de�ned beyond.

Theorem 1 characterizes choice rules with O “ R that satisfy neutrality, decom-

posability, and continuity. We prove it in three steps. First, we formulate and prove

a version of the characterization for rules with O “ Z without the continuity assump-

tion, then deduce the result for O “ Q, and �nally derive the theorem from the result

for Q by applying continuity.

Recall that the multinomial logit rule with parameter β P R is denoted by MNLβ

and is given by

MNLβ
pA, uqa “

exppβ ¨ opaqq
ř

bPA exppβ ¨ opbqq
.

We also consider the limiting cases for β Ñ ˘8 denoted by MNL`8 and MNL´8;

these are the rules that output the uniform distribution over the highest-outcome and

the lowest-outcome actions, respectively. We will refer to MNLβ with β P R Y t˘8u

as the generalized multinomial logit rule.

Proposition 2. Let Φ be a neutral, decomposable stochastic choice rule for the out-

come space O “ Z. Then Φ coincides with the generalized multinomial logit rule

MNLβ for some β P R Y t˘8u.

Proof of Proposition 2. Consider a menu

pB, rq “

"

b0
0

b1
1

*

and for i P t0, 1u denote pi “ ΦpB, rqbi . Since p0 ` p1 “ 1, at least one of these

probabilities is non-zero.

8Note that A must be in�nite, since if a P A then so are pa, aq, pa, pa, aqq, etc.
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We now show that ΦpB, rq determines the outcome of ΦpA, oq for any other menu

pA, oq P MZ. If all actions in A have the same outcome, then ΦpA, oqa “ 1{|A| for

all a P A by neutrality. Henceforth, we focus on menus where not all outcomes are

the same. We show that for any pair of actions a and a1 such that opaq ą opa1q, the

following identity holds:

ΦpA, oqa ¨ p0
opaq´opa1q

“ ΦpA, oqa1 ¨ p1
opaq´opa1q. (20)

Denote n “ opaq ´ opa1q ą 0 and consider an auxiliary menu

pA, oq b pB, rq b pB, rq b . . . b pB, rq
looooooooooooooooomooooooooooooooooon

n times

.

The actions pa, b0, . . . , b0q and pa1, b1, . . . , b1q have the same outcome, opaq. By neu-

trality, these actions are assigned the same probability by Φ. Expressing these prob-

abilities via decomposability, we get (20).

With the help of identity (20), we obtain the following answer for ΦpA, oq, de-

pending on whether p0 and p1 are positive or zero.

If p0 “ 0, then choosing a to be an action with the highest outcome, we conclude

from (20) that ΦpA, oqa1 “ 0 for any a1 with opa1q ă opaq. Thus only the actions

with the highest outcomes can be assigned a non-zero probability. By neutrality,

we conclude that ΦpA, oq is the uniform distribution over actions with the highest

outcomes, and thus Φ “ MNL`8.

Similarly, if p1 “ 0, we conclude that ΦpA, oq is the uniform distribution over

actions with the lowest outcomes, i.e., Φ “ MNL´8.

Finally, consider the case where both p0 and p1 are non-zero. Denote β “ lnpp1{p0q.

Let a1 be an action with the lowest outcome. Denote γpA,oq “ ΦpA, oqa1 ¨expp´β ¨opa1qq.

Hence, for any action a P A, identity (20) can be rewritten as follows

ΦpA, oqa “ γpA,oq ¨ exppβ ¨ opaqq.

Since
ř

bΦpA, oqb “ 1, we obtain 1 “ γpA,oq ¨
ř

bPA exppβ ¨ opbqq. Thus

ΦpA, oqa “
exppβ ¨ opaqq

ř

bPA exppβ ¨ opbqq
,

i.e., Φ is the multinomial logit rule with parameter β.

Proposition 2 implies an analogous result for rational utilities.
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Proposition 3. Let Φ be a neutral, decomposable stochastic choice rule for the out-

come space O “ Q. Then Φ coincides with the generalized multinomial logit rule

MNLβ for some β P R Y t˘8u.

Proof. Given Φ with O “ Q, consider a family of rules Φk, k “ 1, 2, . . . with O “ Z
by

Φk
pA, oq “ Φ

ˆ

A,
1

k
¨ o

˙

. (21)

Each Φk is a neutral, decomposable rule. Hence, Proposition 2 implies that there is

βk P RY t˘8u such that Φk coincides with the generalized multinomial logit MNLβk .

By (21),

Φ1
pA, oq “ Φk

pA, k ¨ oq

for any pA, oq P MZ. Thus β1 “ k ¨ βk.

Consider now an arbitrary menu pA, oq P MQ and let k be such that k ¨ o is

integer-valued. We can express ΦpA, oq as follows:

ΦpA, oq “ Φ

ˆ

A,
1

k
¨ pk ¨ oq

˙

“ Φk
pA, k ¨ oq “ MNLβk pA, k ¨ oq .

Multinomial logit has the following property MNLβ
pA, α ¨ oq “ MNLα¨β

pA, oq. Using

this property and that β1 “ k ¨ βk, we obtain

ΦpA, oq “ MNLβk pA, k ¨ oq “ MNLk¨βk pA, oq “ MNLβ1 pA, oq .

Thus Φ equals the generalized multinomial logit with parameter β “ β1 for every

menu pA, oq P MQ.

We now turn to rules for outcomes O “ R and are ready to prove Theorem 1

characterizing neutral, decomposable, continuous rules. Recall that pA, onq converges

to pA, oq if limn onpaq “ upaq for all a P A. A rule Φ is continuous if limnΦpA, onqa “

ΦpA, uqa for all a P A when limnpA, onq “ pA, oq.

Proof of Theorem 1. We aim to show that any stochastic choice rules Φ with O “ R
satisfying neutrality, decomposability, and continuity is the multinomial logit rule

MNLβ for some β P R.
By Proposition 3, we know that there exists β P R Y t˘8u such that Φ coincides

with MNLβ on the set of menus with rational utilities MQ. We now demonstrate

that β cannot equal ˘8 by checking that MNL˘8 does not admit a continuous
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extension from MQ to MR. We �rst focus on MNL8 and consider a sequence of

menus pA, onq P MQ with A “ ta0, a1u, onpa0q “ 0 and onpa1q “ 1{n. The limit

menu pA, oq has zero utility for both actions, and thus MNL`8
pA, oq is the uniform

distribution over A. However, MNL`8
pA, onq puts the whole mass on a1 and thus

limn MNL`8
pA, onq ‰ MNL`8

pA, oq. Since MNL´β
pB, rq “ MNLβ

pB,´rq for any

menu pB, rq, discontinuity of MNL´8 follows from that of MNL`8.

We conclude that Φ “ MNLβ with β P R for menus from the dense setMQ Ă MR.

Both rules Φ and MNLβ are continuous and thus coincide on MR.

B Proof of Theorem 2

Proof. Recall that e denotes the identity element of pO, ˚q. For each element x P O
of the outcome space, �x a menu

pAx, oxq “

!ae
e

ax
x

)

that has two actions with outcomes e and x. Let px “ ΦpAx, oxqax be the probability

that the action with outcome x is chosen in this menu.

De�ne the function u : O Ñ R by

upxq “ ln
px

1 ´ px
. (22)

Note that this logarithm is �nite by the positivity of Φ.

We now demonstrate that u is a utility representation of O, i.e., that it satis�es

the generalized Cauchy equation upx ˚ yq “ upxq ` upyq for all x, y P O. Consider a

product menu

pB, oq “

´

pAx, oxq b pAy, oyq

¯

b pAx˚y, ox˚yq.

Recall that the associativity of ˚ is not assumed, so we must be careful about the

order of operations. The constructed product menu contains actions

b “
`

pae, aeq, ax˚y

˘

and b1
“

`

pax, ayq, ae
˘

.

Computing their outcomes, we get

opbq “ pe ˚ eq ˚ px ˚ yq “ x ˚ y and opb1
q “ px ˚ yq ˚ e “ x ˚ y,
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where we used the fact that e is both a left and a right identity. Since the outcomes

of b and b1 are the same, neutrality of Φ implies

ΦpB, oqb “ ΦpB, oqb1 .

By decomposability of Φ, this identity can be rewritten as follows

p1 ´ pxq ¨ p1 ´ pyq ¨ px˚y “ px ¨ py ¨ p1 ´ px˚yq.

Taking the logarithm and using the de�nition of u, we obtain

upx ˚ yq “ upxq ` upyq

and conclude that u is a utility representation of O. We stress that the proof of this

fact uses neither associativity nor commutativity of ˚.

We now consider an arbitrary menu pA, oq and demonstrate that ΦpA, oq is given

by multinomial logit with constructed utility function (8). Let a, b P A be two distinct

actions. We express the ratio ΦpA, oqa{ΦpA, oqb in terms of the constructed utility

representation u. Denote the outcomes by x “ opaq and y “ opbq and consider a new

menu
´

pAx, oxq b pA, oq

¯

b pAy, oyq.

The two actions
`

pae, aq, ay
˘

and
`

pax, bq, ae
˘

have equal outcomes. Indeed, pe ˚ xq ˚ y “ x ˚ y and px ˚ yq ˚ e “ x ˚ y by the

assumption that e is both a left and a right identity element. By neutrality, Φ assigns

equal probabilities to these actions. Applying decomposability, we obtain

p1 ´ pxq ¨ ΦpA, oqa ¨ py “ px ¨ ΦpA, oqb ¨ p1 ´ pyq.

This equality can be rewritten as

ΦpA, oqa

ΦpA, oqb
“

px{p1 ´ pxq

py{p1 ´ pyq

and thus

ΦpA, oqa

ΦpA, oqb
“

exp
´

u
`

opaq
˘

¯

exp
´

u
`

opbq
˘

¯ .
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Since a and b were arbitrary, and
ř

bPA ΦpA, oqb “ 1, we conclude that

ΦpA, oqa “

exp
´

u
`

opaq
˘

¯

ř

bPA exp
´

u
`

opbq
˘

¯ , (23)

i.e., Φ is multinomial logit.

It remains to check the equivalence between the continuity of Φ and that of u. If

u : O Ñ R is a continuous utility representation, then Φ given by (23) is continuous

since the right-hand side of (23) is a continuous function of the pro�le of outcomes. In

the opposite direction, we suppose that Φ is continuous and show that upxnq Ñ upxq

for any sequence xn Ñ x in O. Fix a binary set of actions A “ ta, bu and consider

outcome functions on and o given by onpaq “ opaq “ x, onpbq “ xn, and opbq “ x.

Thus pA, onq converges to the menu with identical outcomes pA, oq. By continuity,

ΦpA, onq converges to the uniform distribution ΦpA, oq. By (23), we get

exp
´

u
`

xn

˘

¯

exp
´

u
`

x
˘

¯ “
ΦpA, onqb

ΦpA, onqa
Ñ

ΦpA, oqb

ΦpA, oqa
“ 1

and so upxnq converges to upxq. Thus u is continuous.

C Proof of Proposition 1

We prove the proposition and then discuss various extensions.

Proof of Proposition 1. Let Φ be a decomposable rule satisfying approximate neu-

trality with parameter εneut ą 0. Our goal is to demonstrate that it is neutral. In

other words, we need to show that, for any menus pA, oq and actions a, a1 P A with

the same outcome opaq “ opa1q, the probabilities assigned by Φ to a and a1 are the

same.

If one of a or a1 has zero probability, then the other also has zero probability by

approximate neutrality. Hence, we can focus on the case where ΦpA, oqa ą 0 and

ΦpA1, o1qa1 ą 0.

Consider a menu pA, oqbn equal to the n-fold product of pA, oq with itself. The

two actions actions pa, . . . , aq and pa1, . . . , a1q have the same outcomes. Thus, by
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approximate neutrality,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ln
Φ

´

pA, oqbn
¯

pa,...,aq

Φ
´

pA, oqbn
¯

pa1,...,a1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď lnp1 ` εneutq (24)

On the other hand, by decomposability,

Φ
´

pA, oq
bn

¯

pa,...,aq
“

´

ΦpA, oqa

¯n

, and Φ
´

pA, oq
bn

¯

pa1,...,a1q
“

´

ΦpA, oqa1

¯n

. (25)

Plugging these identities in (24), we get

ˇ

ˇ

ˇ

ˇ

ln
ΦpA, oqa

ΦpA, oqa1

ˇ

ˇ

ˇ

ˇ

ď
1

n
¨ lnp1 ` εneutq. (26)

Since n is arbitrary, ΦpA, oqa “ ΦpA, oqa1 and thus Φ is neutral.

The proof suggests two straightforward generalizations of Proposition 1. First, we

can allow εneut to depend on the menu, i.e., εneut “ εneutrpB, rqs. Indeed, by (26), the

conclusion of the proposition holds as long as

n
a

1 ` εneutrpA, oqbns Ñ 1, as n Ñ 8.

In particular, if εneutrpB, rqs grows sub-linearly with the size of the menu |B|, then

εneut-neutrality implies neutrality.

Proposition 1 also extends to rules Φ that are both approximately neutral and

approximately decomposable with parameters εneut ě 0 and εdecomp ě 0. For such Φ,

identities (25) hold up to a multiplicative factor p1 ` εdecompqn and we get

ˇ

ˇ

ˇ

ˇ

ln
ΦpA, oqa

ΦpA, oqa1

ˇ

ˇ

ˇ

ˇ

ď
1

n

´

lnp1 ` εneutq ` 2 ¨ ln
`

p1 ` εdecompq
n
˘

¯

instead of (26). Letting n go to in�nity, we conclude that

ΦpA, oqa ď p1 ` εdecompq
2

¨ ΦpA, oqa1 .

Thus any εneut-neutral εdecomp-decomposable Φ is also ε1
neut-neutral with

ε1
neut “ min

!

εneut, 2 ¨ εdecomp ` ε2decomp

)

. (27)
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D Proof of Theorem 3

Recall that the outcome space is O “ R and Φ is a continuous rule satisfying approx-

imate neutrality and approximate decomposability with parameters εdecomp ě 0 and

εneut ě 0. Our goal is to demonstrate that Φ is εdecomp-close to multinational logit.

The proof is split into several lemmas. The �rst one demonstrates that any rule Φ

from the statement of the theorem satis�es a stronger neutrality notion that we are

about to de�ne.

We call two menus pA, oq and pA1, o1q equivalent if there exists a bijection σ : A Ñ

A1 such that opaq “ o1pa1q for all a P A and a1 “ σpaq. Equivalence means that the

menus are the same up to renaming the actions. A rule Ψ is strongly neutral if for

equivalent pA, oq and pA1, o1q we have

ΨpA, oqa “ ΨpA1, o1
qa1 when opaq “ o1

pa1
q.

Strong neutrality means that the pro�le of outcomes is a su�cient statistic for choice

probabilities. Similarly, Ψ is approximately strongly neutral with a parameter

εs´neut ě 0 if

ΨpA, oqa ď p1 ` εs´neutqΨpA1, o1
qa1 when opaq “ o1

pa1
q.

It is easy to see that approximate strong neutrality implies approximate neutrality

with the same parameter. By Theorem 2, exact neutrality and decomposability imply

strong neutrality. The following lemma shows that this implication extends to the

approximate axioms.

Lemma 4. Let Ψ be a rule satisfying approximate neutrality and decomposability with

parameters εneut ě 0 and εdecomp ě 0, respectively. Then Ψ is approximately strongly

neutral with parameter εs´neut such that 1 ` εs´neut “ p1 ` εneutqp1 ` εdecompq2.

The lemma implies that the rule Φ from the statement of the theorem is approx-

imately strongly neutral.

Proof of Lemma 4. Consider equivalent menus pA, oq and pA1, o1q and let σ : A Ñ A1

be the bijection such that opaq “ o1pa1q for all a P A and a1 “ σpaq. Fix a and

a1 “ σpaq. In a product menu pB, rq “ pA, oqˆpA1, o1q, actions pa, b1q and pσ´1pb1q, a1q

have the same outcomes. Hence, approximate neutrality implies

ΨpB, rqpa,b1q ď p1 ` εneutqΨpB, rqpσ´1pb1q, a1q.
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Expanding both sides via approximate decomposability, we get

1

1 ` εdecomp

ΨpA, oqa ¨ ΨpA1, o1
qb1 ď p1 ` εneutqp1 ` εdecompqΨpA, oqσ´1pb1q ¨ ΨpA1, o1

qa1 .

Summing both sides over b1 P A1 and using the fact that probabilities sum up to one,

we obtain

ΨpA, oqa ď p1 ` εneutqp1 ` εdecompq
2

¨ ΨpA1, o1
qa1

and conclude that Ψ is approximately strongly neutral with parameter εs´neut.

For a menu pA, oq, we denote (as above) by pA, oqbn the product of pA, oq with

itself n times. Given a rule Φ from the statement of the theorem, we de�ne an

auxiliary rule ΥpA, oq as follows:

ΥpA, oqa “ lim
nÑ8

n

c

Φ
´

pA, oqbn
¯

pa,...,aq
. (28)

We will demonstrate that this limit exists and that Υ is close to Φ. Moreover, we will

see that Υ satis�es exact decomposability and neutrality.

Lemma 5. The limit in (28) exists and

Φ
´

pA, oq
bn

¯

pa,...,aq
ď p1 ` εdecompq

´

ΥpA, oqa

¯n

(29)
´

ΥpA, oqa

¯n

ď p1 ` εdecompqΦ
´

pA, oq
bn

¯

pa,...,aq

for any n ě 1.

Proof. We �rst consider the case ΦpA, oqa “ 0. By approximate decomposability,

Φ
`

pA, oqbn
˘

pa,...,aq
is also zero. Thus the limit (28) exists, equals zero, and inequali-

ties (29) are satis�ed trivially.

We now assume ΦpA, oqa ą 0. Denote

fn “ ln
´

Φ
´

pA, oq
bn

¯

pa,...,aq

¯

.

By the approximate decomposability,

|fn`m ´ fn ´ fm| ď lnp1 ` εdecompq (30)

for any n,m ě 1. We need the following standard result about subadditive sequences.
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Lemma (Fekete's subadditive lemma). Consider a sequence of real numbers gn, n ě

1, with the subadditivity property: gn`m ď gn ` gm. Then, there exists a limit γ “

limnÑ8
gn
n

P R Y t´8u and gn satis�es the lower bound gn ě γ ¨ n for any n ě 1.

Inequality (30) implies that the two sequences gn “ fn ` lnp1 ` εdecompq and

g1
n “ ´fn ` lnp1 ` εdecompq are both subadditive. By Fekete's lemma, there exists a

limit

γ “ lim
nÑ8

fn
n

P R, and |fn ´ γ ¨ n| ď lnp1 ` εdecompq.

Expressing the limit in the de�nition (28) of Υ through fn, we get

ΥpA, oqa “ lim
nÑ8

n

c

Φ
´

pA, oqbn
¯

pa,...,aq
“ exp

ˆ

lim
nÑ8

fn
n

˙

“ exppγq.

Thus the limit in (28) exists. Moreover, the inequalities (29) hold as they are equiv-

alent to |fn ´ γ ¨ n| ď lnp1 ` εdecompq.

Lemma 6. Υ is neutral.

To prove this and other statements below, we will use the notation Ωp1q to denote

a quantity bounded away from zero and in�nity. Formally, a sequence hn ě 0, n ě 1,

satis�es hn “ Ωp1q if there exist constants α ą 0 and N0 such that α ď hn ď 1{α for

any n ě N0.

Proof. Consider a menu pA, oq and a pair of actions a, a1 P A with opaq “ opa1q. Our

goal is to show that ΥpA, oqa “ ΥpA, oqa1 . By the approximate neutrality of Φ,

Φ
´

pA, oq
bn

¯

pa,...,aq
“ Ωp1q ¨ Φ

´

pA, oq
bn

¯

pa1,...,aq1
.

By the de�nition of Υ, we get

ΥpA, oqa “ lim
nÑ8

n

c

Φ
´

pA, oqbn
¯

pa,...,aq

“ lim
nÑ8

n

c

Ωp1q ¨ Φ
´

pA, oqbn
¯

pa1,...,a1q

“ lim
nÑ8

n
a

Ωp1q ¨ lim
nÑ8

n

c

Φ
´

pA, oqbn
¯

pa1,...,a1q

“ lim
nÑ8

n

c

Φ
´

pA, oqbn
¯

pa1,...,a1q

“ ΥpA, oqa1 .

Thus ΥpA, oqa “ ΥpA, oqa1 and so Υ is neutral.
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Lemma 7. Υ is decomposable.

Proof. Consider a pair of menus pA1, o1q and pA2, o2q and let pA, oq “ pA1, o1q b

pA2, o2q. Our goal is to show that ΥpA, oqpa,bq “ ΥpA1, o1qa ¨ ΥpA2, o2qb. By the

de�nition of Υ,

ΥpA, oqpa,bq “ lim
nÑ8

n

c

Φ
´

pA, oqbn
¯

ppa,bq,...,pa,bqq
.

Menus pA, oqbn and pA1, o1q
bnbpA2, o2qbn are equivalent and the actions ppa, bq, . . . , pa, bqq

and
`

pa, . . . , aq, pb, . . . , bq
˘

have the same outcomes. By Lemma 4 and approximate

decomposability, we obtain

Φ
´

pA, oq
bn

¯

ppa,bq,...,pa,bqq
“ Ωp1q ¨ Φ

´

pA1, o1q
bn

¯

pa...,aq
¨ Φ

´

pA2, o2q
bn

¯

pb...,bq
.

Thus

ΥpA, oqpa,bq “ lim
nÑ8

n

c

Ωp1q ¨ Φ
´

pA1, o1qbn
¯

pa...,aq
¨ Φ

´

pA2, o2qbn
¯

pb...,bq

“ lim
nÑ8

n
a

Ωp1q ¨ lim
nÑ8

n

c

Φ
´

pA1, o1qbnqpa...,aq ¨ lim
nÑ8

n

c

Φ
´

pA2, o2qbn
¯

pb...,bq

“ ΥpA1, o1qa ¨ ΥpA2, o2qb.

We conclude that Υ is decomposable.

From the de�nition of Υ, it is not apparent that the probabilities of all the actions

sum up to one. The following lemma veri�es this.

Lemma 8. For any menu pA, oq, we have

ÿ

aPA

ΥpA, oqa “ 1.

Proof. Consider a menu pA, oq and its n-fold product pA, oqbn.

Since ΦpA, oqbn is a probability measure, we get

1 “
ÿ

tPAˆ...ˆA

Φ
´

pA, oq
bn

¯

t
(31)

Assuming that n Ñ 8, we approximately express each of the terms ΦpA, uq
bn
t in

this sum through Υ. For each a P A, denote by naptq the number of times a enters
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t P A ˆ . . . ˆ A. By approximate decomposability and approximate strong neutrality

(Lemma 4),

Φ
´

pA, oq
bn

¯

t
“ Ωp1q ¨

ź

aPA

Φ
´

pA, oq
bnaptq

¯

pa,...,aq

Using inequalities (29), we obtain

Φ
´

pA, oq
bn

¯

t
“ Ωp1q ¨

ź

aPA

`

ΥpA, oqa
˘naptq

.

Plugging this expression into (31) gives

1 “
ÿ

tPAˆ...ˆA

Ωp1q ¨
ź

aPA

`

ΥpA, oqa
˘naptq

“ Ωp1q ¨

˜

ÿ

aPA

ΥpA, oqa

¸n

.

Thus
ÿ

aPA

ΥpA, oqa “ lim
nÑ8

n
a

Ωp1q “ 1.

We conclude that ΥpA, oq is indeed a probability distribution over A.

Proof of Theorem 3. Consider a continuous rule Φ satisfying approximate neutrality

and decomposability with parameters εneut and εdecomp.

Let Υ be de�ned by formula (28). As we established in Lemmas 5, 6, 7, and 8, Υ

is a decomposable neutral rule that is close to Φ in the following sense

ΦpA, oqa ď p1 ` εdecompqΥpA, oqa (32)

ΥpA, oqa ď p1 ` εdecompqΦpA, oqa

Consider a restriction of Υ to the collection MQ of menus pA, oq with rational-

valued o. By Proposition 3, there is β P R Y t˘8u such that Υ coincides with the

generalized logit MNLβ for any pA, oq P MQ. We now show that the case of in�nite

β is ruled out by continuity of Φ. Towards contradiction, suppose that β “ `8

and so Υ “ MNLβ
pA, oq is the uniform distribution over the highest-outcome actions

A˚ “ argmax opaq. By (32), ΦpA, oq places non-zero weight on actions a P A˚ only

and ΦpA, oqa ě 1{p|A˚| ¨ p1 ` εdecompqq. Consider a sequence of menus pA, onq with

A “ ta0, a1u and onpa0q “ 0, onpa1q “ 1{n as in the proof of Theorem 1. We obtain

that limn ΦpA, onqa0 “ 0 but ΦpA, oqa0 ě 1{p2 ¨ p1 ` εdecompqq for the limiting menu

pA, oq “ limnpA, onq. This contradiction with continuity of Φ implies that β cannot be

equal `8. The case of β “ ´8 is also ruled out as MNL´8
pA, oq “ MNL`8

pA,´oq.
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We conclude that there exists β P R such that, for any menu with rational out-

comes pA, oq P MQ,

ΦpA, oqa ď p1 ` εdecompqMNLβ
pA, oqa (33)

MNLβ
pA, oqa ď p1 ` εdecompqΦpA, oqa

Since MQ is dense in the set of all menus and the rules Φ and MNLβ are continuous,

the inequalities hold for all menus pA, oq.

Since MNLpA, oqa ą 0 for any action and menu, the inequalities (33) imply that

ΦpA, oqa ą 0. De�ne

spaq “ ln

ˆ

ΦpA, oqa

MNLβ
pA, oqa

˙

.

By (33), we get |spaq| ď lnp1 ` εdecompq. Since lnp1 ` xq ď x,

|spaq| ď εdecomp.

We conclude that ΦpA, oqa is proportional to exppβ ¨ opaq ` spaqq, where s : A Ñ

r´εdecomp, εdecomps. Thus Φ is εdecomp-close to MNLβ.

Finally, we check that β P R such that Φ is εdecomp-close to MNLβ is unique.

Indeed, suppose that Φ is εdecomp-close both to MNLβ and MNLβ1

. Therefore, for any

menu pA, oq and a P A,

1

p1 ` εdecompq2
ď

MNLβ
pA, oqa

MNLβ1

pA, oqa
ď p1 ` εdecompq

2. (34)

Consider a binary menu pB, rq with B “ tb0, b1u and outcomes rpbiq “ i and take

pA, oq in (34) equal to the n-fold product pA, oq “ pB, rqbn. Picking a “ pb1, . . . , b1q

and letting n go in�nity, we get that β “ β1. Thus β is unique and the proof is

completed.

E Proof of Theorem 4

Theorem 4 claims that a positive εneut-neutral and εdecomp-decomposable rule Φ for

a general outcome space pO, ˚q that is Ulam stable must be close to multinomial

logit. We prove here an extension of this theorem providing an explicit bound on the

distance in terms of pεneut, εdecompq. Recall that a generalized Cauchy equation

upx ˚ yq “ upxq ` upyq for all x, y P O. (35)
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is pε, δq-stable if for any function w solving the ε-approximate equation

ˇ

ˇwpx ˚ yq ´ wpxq ` wpyq
ˇ

ˇ ď ε for all x, y P O (36)

there is a solution u of (35) such that

|upxq ´ wpxq| ď δ for all x P O.

Theorem 5. Consider an outcome space O such that the Cauchy equation (35) is

pε, δq-stable with δ “ dpεq and any ε ą 0. Let Φ be a positive εneut-neutral εdecomp-

decomposable stochastic choice rule with some εneut ě 0 and εdecomp ě 0. Then Φ is
´

γ ` 2 ¨ dpγq

¯

-close to multinomial logit, where γ “ 4 ¨ εdecomp ` εneut.

As established in (27), any εneut-neutral εdecomp-decomposable rule is also p2 ¨

εdecomp ` ε2decompq-neutral. Combining this insight with Theorem 5, we obtain that Φ

from the statement is
´

6¨εdecomp`ε2decomp`dp6¨εdecomp`ε2decompq

¯

-close to multinomial

logit, where the bound no longer depends on εneut. This completes the proof of

Theorem 4.

Proof of Theorem 5. The proof resembles that of Theorem 2 with the exception that

exact equalities are replaced with approximate ones.

As in the proof of Theorem 2, for each element x P O of the outcome space, �x a

menu

pAx, oxq “

!ae
e

ax
x

)

,

and let px “ ΦpAx, oxqax .

We de�ne

wpxq “ ln
px

1 ´ px
.

By positivity, w is �nite.

We now demonstrate that w solves the approximate Cauchy equation (36) with

ε “ 4 ¨ εdecomp ` εneut, i.e.,

|wpx ˚ yq ´ wpxq ´ wpyq| ď ε

for all x, y P O. Consider a product menu

pB, oq “

´

pAx, oxq b pAy, oyq

¯

b pAx˚y, ox˚yq.
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The constructed product menu contains actions

b “
`

pae, aeq, ax˚y

˘

and b1
“

`

pax, ayq, ae
˘

.

Computing their outcomes, we get

opbq “ pe ˚ eq ˚ px ˚ yq “ x ˚ y and opb1
q “ px ˚ yq ˚ e “ x ˚ y,

where we used the fact that e is both a left and a right identity. Since the outcomes

of b and b1 are the same, approximate neutrality of Φ implies
ˇ

ˇ

ˇ

ˇ

ln
ΦpB, oqb

ΦpB, oqb1

ˇ

ˇ

ˇ

ˇ

ď lnp1 ` εneutq.

By approximate decomposability applied twice,
ˇ

ˇ

ˇ

ˇ

ln
ΦpB, oqb

p1 ´ pxq ¨ p1 ´ pyq ¨ px˚y

ˇ

ˇ

ˇ

ˇ

ď lnpp1 ` εdecompq
2
q

and
ˇ

ˇ

ˇ

ˇ

ln
ΦpB, oqb1

px ¨ py ¨ p1 ´ px˚yq

ˇ

ˇ

ˇ

ˇ

ď lnpp1 ` εdecompq
2
q.

Combining these inequalities, we get
ˇ

ˇ

ˇ

ˇ

ln
p1 ´ pxq ¨ p1 ´ pyq ¨ px˚y

px ¨ py ¨ p1 ´ px˚yq

ˇ

ˇ

ˇ

ˇ

ď 2 lnpp1 ` εdecompq
2
q ` lnp1 ` εneutq.

Since lnp1`tq ď t for any t ą ´1, the right-hand side does not exceed 4¨εdecomp`εneut.

Expressing the left-hand side through the function w, we get

ˇ

ˇwpx ˚ yq ´ wpxq ´ wpyq
ˇ

ˇ ď 4 ¨ εdecomp ` εneut.

Since the Cauchy equation is assumed to be pε, dpεqq-stable, we conclude that there

is a utility representation u : O Ñ R solving the exact Cauchy equation

upx ˚ yq “ upxq ` upyq

and such that

|upxq ´ wpxq| ď dpεq with ε “ 4 ¨ εdecomp ` εneut.

We now consider an arbitrary menu pA, oq. Let a, b P A be two distinct actions.

Denote their outcomes by x “ opaq and y “ opbq and consider a menu

pC, sq “

´

pAx, oxq b pA, oq

¯

b pAy, oyq.
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The actions c “
`

pae, aq, ay
˘

and c1 “
`

pax, bq, ae
˘

have outcomes equal to x ˚ y. By

approximate neutrality,
ˇ

ˇ

ˇ

ˇ

ln
ΦpC, sqc

ΦpC, sqc1

ˇ

ˇ

ˇ

ˇ

ď lnp1 ` εneutq ď εneut.

Approximate decomposability implies
ˇ

ˇ

ˇ

ˇ

ln
ΦpC, sqc

p1 ´ pxq ¨ ΦpA, oqa ¨ py

ˇ

ˇ

ˇ

ˇ

ď 2 ¨ lnp1 ` εdecompq ď 2 ¨ εdecomp

and
ˇ

ˇ

ˇ

ˇ

ln
ΦpC, s1qc1

px ¨ ΦpA, oqb
¨ p1 ´ pyq

ˇ

ˇ

ˇ

ˇ

ď 2 ¨ lnp1 ` εdecompq ď 2 ¨ εdecomp.

Thus
ˇ

ˇ

ˇ

ˇ

ln
p1 ´ pxq ¨ ΦpA, oqa ¨ py
px ¨ ΦpA, oqb ¨ p1 ´ pyq

ˇ

ˇ

ˇ

ˇ

ď 4 ¨ εdecomp ` εneut.

We conclude that
ˇ

ˇ

ˇ

ˇ

ln
ΦpA, oqa

ΦpA, oqb
´ wpxq ` wpyq

ˇ

ˇ

ˇ

ˇ

ď 4 ¨ εdecomp ` εneut.

Expressing the approximate solution w through the exact solution u, we obtain
ˇ

ˇ

ˇ

ˇ

ln
ΦpA, oqa

ΦpA, oqb
´ upxq ` upyq

ˇ

ˇ

ˇ

ˇ

ď 4 ¨ εdecomp ` εneut ` 2 ¨ dpεq

or, equivalently,
ˇ

ˇ

ˇ

ˇ

ln
ΦpA, oqa

ΦpA, oqb
´ upopaqq ` upopbqq

ˇ

ˇ

ˇ

ˇ

ď 4 ¨ εdecomp ` εneut ` 2 ¨ dpεq.

Fix some b1 P A and de�ne

spaq “ lnΦpA, oqa ´ upaq ` C,

where the constant C is selected so that spb1q “ 0. We conclude that

|spaq| ď 4 ¨ εdecomp ` εneut ` 2 ¨ dpεq for any a P A.

On the other hand,

ΦpA, oqa

ΦpA, oqb
“

exp
´

u
`

opaq ` spaq
˘

¯

exp
´

u
`

opbq ` spbq
˘

¯

and so

ΦpA, oqa “
exp

`

u
`

opaq
˘

` spaq
˘

ř

bPA exp
`

u
`

opbq
˘

` spbq
˘ .

Thus Φ is
´

4 ¨ εdecomp ` εneut ` 2 ¨ dp4 ¨ εdecomp ` εneutq
¯

-close to multinomial logit.
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