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Abstract

We consider an auction of identical digital goods to customers whose valuations are drawn
independently from known distributions. Myerson’s classic result identifies the truthful mecha-
nism that maximizes the seller’s expected profit.

Under the assumption that in small groups customers can learn each others’ valuations,
we show how Myerson’s result can be improved to yield a higher payoff to the seller using a
mechanism that offers groups of customers to buy bundles of items.

1 Introduction

1.1 Bundling items

Bundling is the practice of joining together a number of products into a “bundle”, so that customers
may not buy each product separately, but must choose to either buy the entire bundle or have
non of the included items. Alternatively, customers may be allowed to purchase a single item,
but at a higher cost; that is, the price of the bundle is set to below the sum of the prices of
the individual items that comprise it. Examples range from McDonald’s happy meals to enormous
defense contracts [1] (see also the recent attention to bundling of scientific journal subscriptions [7]).
Bundling has also received much attention from theorists (cf. [2, 10, 8] and many more).

However, consider a population of consumers who are potential customers for some mass pro-
duced product (i.e., the number of available items is unlimited). Assume also that customers
generally have no need for more than one item. For example, the product might be an upgrade
to an operating system, a cellphone data package or removal of tax offenses record. This class of
products is sometimes referred to as digital goods.

Since each customer has no need for more than one item, bundling items does not seem to offer
an advantage to the seller. Indeed, Myerson [11] shows that in a Bayesian setting the best strategy
available to the seller is to offer a fixed per-item price1. Since customer valuations for a product
may differ wildly, fixing a price often means forfeiting the customers who are willing to pay less,
while undercharging the customers who are willing to pay more.
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1Different fixed prices may be offered to different customers in a practice called price differentiation.
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1.2 Bundling customers

We consider a different kind of bundling, which, although also widespread, seems (to our knowledge)
to have been largely overlooked by theorists. We propose that the seller may increase its profit
beyond Myerson’s bound by bundling customers: here customers are arbitrarily grouped into pairs
and are offered to buy two items for a price that is lower than the sum of the prices of the individual
items. The same can of course be done for larger groups of customers, so that a group of n customers
are jointly offered to buy n items for a discount.

Our key assumption is what we call group rationality: namely that a bundle of customers will
accept the group offer if there is a way for them to share the cost so that all of them benefit. For
example, consider two customers who are each interested in buying a copy of a book whose (single
item) price is set to 10 Gold Dinars. Let customer X be willing to pay at most 20 Dinars, and let
customer Y be willing to pay at most 5 Dinars. Let the cost of a single book be set to 10 Dinars.
Group rationality implies that if X and Y were offered to jointly buy two books for 11 Dinars
then they would accept and find a way to split the cost, since both can benefit; customer X can
contribute 8 Dinars and customer Y can contribute 3 Dinars, and then X has paid two Dinars less
than she would have paid on her own, and Y was able to buy the book, which he wouldn’t been
able to do on his own. Note that assuming that the cost of printing a book is small, then the seller
is also strictly better off.

Our group rationality assumption is novel in the context of Myerson auctions, and is in fact
what allows us to increase the seller’s profit past Myerson’s bound on truthful auctions. We note
that indeed there is no truthful mechanism for two customers to agree on a division of costs when a
feasible one exists; this is nothing but the well known “splitting the dollar” game. In the example
above, if customer Y manages to convince X that he is not willing to pay more than 2 Dinars, then
X might settle for paying 9 herself, which still leaves her better off than buying a single book for
10 Dinars.

However, we argue that it is important to consider group rationality; it is in fact a phenomenon
that, in other contexts, has been widely studied theoretically and experimentally, and falls under
the general titles of cooperation and altruism (cf. [3, 12, 5, 13]).

Specifically, families and tribes are often group rational (for obvious evolutionary reasons, cf. [9]),
as are other groups of people who expect to have to rely on each other in the future. A further
argument to support group rationality in our setting is the observation that when the stakes (i.e., the
savings) are high, one could expect that in any small group people would be sufficiently incentivized
to find a way to compromise, trust and share, even if there is a danger of being short-changed; in
reality, prisoners do sometimes choose to “cooperate” even when facing the risk of “defection” by
cellmates, and the tragedy of the commons can be averted (cf. [6]).

1.3 Results

We consider a Bayesian setting with independent customer valuation distributions and group ra-
tional customers. Our main result is that under mild smoothness conditions of the customers’
valuation distributions, the seller can expect a strictly higher profit when bundling customers into
pairs, as compared to selling single items.

We also show that when valuations are uniformly bounded then, as the size of the bundle
increases, the seller’s expected profit from the customers approaches the sum of their expected
valuations for the product, which is an upper bound on the seller’s profit. This bound is achieved
in single customer auctions only when the customer reveals its valuation to the seller.

Approaching this limit by bundling ever larger groups of customers would require ever more
trust among them. Note that assuming group rationality for larger groups is a stronger assumption
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than group rationality for smaller groups. Indeed, as the size of the group grows, the believability
of group rationality diminishes; all else being equal, it seems harder to expect honesty and trust
among a hundred people than among a couple.

Our results can therefore be interpreted to show that the seller can exploit trust among cus-
tomers2 to increase its profit. And in fact, the more trusting the customers are (i.e., the larger the
trusting group is), the higher the profit the seller can expect, up to the maximal profit possible.

2 Model

Let [n] = {1, . . . , n} be the set of customers. Each customer i has a private valuation Vi, which
is the maximum price that it would be willing to pay for the product. These valuations are not
known to the seller, who however has some knowledge of what they might be. We model the seller’s
uncertainty by assuming that each valuation Vi is picked independently3 from some distribution with
cumulative distribution function (CDF) Fi. This model is a special case of Myerson auctions [11].

We make a number of mild smoothness conditions on the distributions of valuations: We assume
that Fi is non-atomic and differentiable with bounded density (PDF) fi. We assume all valuations
are in [0,M ] for some M ∈ R, so that fi is zero outside this interval for all i. We further assume
that for some δ > 0 it holds for all i that δ < fi < 1/δ in the interval [0,M ]4.

Let s be an auction mechanism or sales strategy. We assume that it can result in each of the
customers either receiving or not receiving an item, and parting with some sum of money. In the
context of s, we denote by Rsi the event that customer i receives an item. We denote by P si the
price, or the amount of money customer i paid the seller for the item. We denote customer i’s
utility by Csi , where

Csi = 1Rsi (Vi − P
s
i ). (1)

and denote the customer’s expected utility by csi = E [Csi ].
Let U si denote the seller’s utility from selling to customer i. We assume that the cost of an item

is zero, and so define

U si = P si . (2)

We denote the seller’s expected utility by usi = E [U si ]. We denote the seller’s total expected utility
by us =

∑n
i=1 u

s
i .

We assume throughout that given a seller’s strategy, the customer will pick a strategy that will
maximize its expected utility. Given that, a seller will pick a strategy that will maximize its own
total expected utility. We largely ignore the possibility of ties (i.e., two strategies that result in the
same expected utility, for either the customer or the seller), since, as we assume the distribution
of the valuations is non-atomic, it will be the case for the strategies that we consider that ties will
occur with probability zero.

2Note that the customers are not required to trust the seller!
3Despite some recent progress [14], it seems that Myerson auctions are generally difficult to analyze when valuations

are not independent. We conjecture that our results hold also for the case of correlated valuations.
4These assumptions can be significantly relaxed at the price of a significantly more technical and difficult to read

paper.
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2.1 Sales strategies

2.1.1 Single customer one time offer

We assume that the seller wishes to maximize the sum of the expected revenues it extracts from the
customers. A possible strategy would be to give each customer i a one time offer to buy the product
at price pi. Myerson [11] shows that this sales strategy, of all the truthful strategies, maximizes the
profit of the seller, for the appropriate choice of pi.

The customer’s utility in this case is Ci = (Vi−pi)1Ri . Therefore, assuming the customer wishes
to maximize its utility, it would buy iff Vi ≥ pi (or equivalently Vi > pi, since P [Vi = pi] = 0). Hence
Ri = 1Vi≥pi , the gain by the seller is Pi = pi1Ri , and the seller’s expected utility is

ui(pi) = E [Pi] = pi · P [Vi ≥ pi] + 0 · P [Vi < pi] = pi(1− Fi(pi)), (3)

with

u′i(pi) =
dui(pi)

dpi
= 1− Fi(pi)− pifi(pi). (4)

If we assume that Fi is non-atomic, differentiable and only supported on [0,M ], then ui(pi) is
continuous and differentiable and must have a maximum in [0,M ]. By solving u′i(pi) = 0 we can
show that any pi which maximizes ui satisfies

pi =
1− Fi(pi)
fi(pi)

. (5)

Furthermore, under these assumptions ui(0) = ui(M) = 0, whereas clearly ui is positive for some
0 < pi < M . Hence this maximum does not occur at 0 or M .

2.1.2 Bundling customers

We next consider the strategy of bundling the customers. Let [n] = {1, . . . , n} be a set of customers.
The bundling strategy here is parametrized by a vector of single item prices ā = (a1, . . . , an) and
the bundle price b.

The n customers are given the option to buy a bundle of n items (i.e., each gets an item) for
the total price of b. Additionally, each customer i may buy a single item for the price of ai.

We assume group rationality, so that the customers choose to buy the bundle if the cost can
be shared in a way that is profitable for all. That is, the customers buy the bundle if there exist
(P1, . . . , Pn) such that the following holds:

1.
∑

i Pi = b.

2. Pi ≤ Vi for all i ∈ [n]. That is, each customer’s utility for buying the bundle is positive, or
better than the utility for not buying.

3. Pi ≤ ai for all i ∈ [n]. That is, each customer’s utility for buying the bundle is better than
the utility for buying individually.

Hence, we assume that if the cost of the bundle can be shared in a way that, for each customer,
improves the utility over the other alternatives, then the customers will find a way to share the cost
and will choose to buy the bundle. When this is not the case then each customer i, independently,
decides to either buy or to buy, depending on whether ai ≤ Vi, as in the single customer case.
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Formally, Ri = 1 iff the condition above holds or ai ≤ Vi. Note that “≤” can be replaced by “<”
throughout, since ties occur with probability zero.

Note that when the conditions above apply - i.e., accepting the bundle is group rational for
some prices {Pi} - then accepting the offer and paying Pi is a Nash Equilibrium: it is better for
customer i to accept the offer for Pi rather than shop alone, since then it would have to pay more.

3 Results

3.1 Smoothness and boundedness conditions

We make the following assumptions on the distribution of customer valuations Vi. Recall that we
denote by Fi and fi the CDF and PDF of the distribution of Vi.

1. Customers valuations are independent and non-atomic.

2. There exists M > 0 such that, for all i, Vi is in [0,M ].

3. The distribution of Vi has a density (PDF) fi.

4. There exists 0 < δ < 1 such that, for all i, δ < fi(p) < 1/δ for p ∈ [0,M ].

3.2 Theorem statements

In the statement of the following theorem we mark quantities related to the single customer strategy
by s, and quantities related to the bundling strategy by b. E.g., U si is the seller’s utility from
customer i using the single customer strategy, and ubi is the seller’s expected utility from customer
i using the pair bundling strategy.

Theorem 3.1. Let {1, 2} be a pair of customers with valuation distributions satisfying the smooth-
ness and boundedness conditions in 3.1. Let

us(p1, p2) = us1(p1) + us2(p2)

be the seller’s total expected utility when using the single customer strategy with prices p1 and p2.
Let

ub(a1, a2, b) = ub1(a1, a2, b) + ub2(a1, a2, b)

be the seller’s total expected utility when using the pair bundling strategy with prices a1, a2 and b.
Then

max
a1,a2,b

ub(a1, a2, b) > max
p1,p2

us(p1, p2). (6)

That is, the best bundling strategy is strictly better than the best single customer strategy.
The next theorem shows that when valuations are bounded then, as the size of the bundle

grows, the expected utility of the seller from the customers approaches the sum of their expected
valuations.

Theorem 3.2. Consider a set of n customers with valuation distributions satisfying the smoothness
and boundedness conditions in 3.1.
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Let µi = E [Vi] be customer i’s expected valuation, and let µ =
∑n

i=1 µi be the sum of the
customers’ expected valuations. Let

un(ā, b) =
n∑
i=1

ubi(ā, b)

be the seller’s total expected utility when bundling all n customers with prices ā = (a1, . . . , an) and
b.

Then the seller’s total expected utility satisfies

max
ā,b

un(ā, b) ≥
(

1− 4

δ

√
log n

n
−O

(
1

n

))
µ (7)

Note that since a customer will never pay more than its valuation then

max
ā,b

un(ā, b) ≤ µ.

4 Proofs

Proof of Theorem 3.1. Let (p1, p2) be the prices that maximize the seller’s total expected utility
for the single customer strategy. We will prove the theorem by showing that there exists ε > 0 such
that

ub(p1 + ε, p1, p1 + p2) > us(p1, p2). (8)

Note that since p1 is optimal for the single customer strategy, then

∂us(p1, p1)

∂p1
=
dus1(p1)

dp1
= 0.

Hence there exist a constant C1 such that for all ε small enough it holds that

us(p1 + ε, p2) > us(p1, p2)− C1ε
2. (9)

Let B denote the event that the customers buy the bundle. Recall that in the bundling strategy
with prices (p1 + ε, p2, p1 + p2) B occurs if and only if there exist P1 and P2 such that

P1 + P2 = p1 + p2, (10)

V1 ≥ P1,

V2 ≥ P2,

P1 ≤ p1 + ε,

P2 ≤ p2.

Using Eq. (10) we can substitute P2 = p1 +p2−P1 and arrive at the following equivalent condition:
B occurs if and only if there exists a P1 such that

p2 − V2 ≤ P1 − p1 ≤ V1 − p1,

0 ≤ P1 − p1 ≤ ε.
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In this form it is apparent that B occurs if and only if

V1 + V2 ≥ p1 + p2,

V1 ≥ p1,

V2 ≥ p2 − ε.
We now partition our probability space into the disjoint events {Aε1, Aε2, Aε3, Aε4, Aε5} (see Fig. 1),

where the ε in the superscripts denotes the fact that these events depend on ε. We compare
U s = U s(p1, p2) and U b = U b(p1 + ε, p2, p1 + p2) in each event.

p1 p1 + ǫ

p2

p2 − ǫ

Aǫ
1

Aǫ
2

Aǫ
3

Aǫ
4 Aǫ

5

Figure 1: Disjoint union of R+2
into {Aεi}5i=1.

1. Let Aε1 be the event that (V1, V2) ∈ [p1,∞) × [p2,∞). Then in A1, in the single customer
strategy both customers buy an item for a total of p1 + p2, and in the bundling strategy the
customers buy the bundle for p1 + p2. Hence

U s1Aε1 = U b1Aε1

and

E
[
U b1Aε1

]
= E

[
U s1Aε1

]
. (11)

2. Let Aε2 be the event that (V1, V2) ∈ [0,∞)× [0, p2−ε). In this region the bundle is not bought,
and neither does customer 2 buy an item on their own, in either strategies. Hence in this
region customer 1 buys the item iff V1 ≥ p1 + ε in the bundling strategy. Since V1 and V2 are
independent then the (expected) utility for the seller in the bundling strategy is identical to
what it would be when offering a single item to customer 1 for p1 + ε. Since, by Eq. (9), this
expected utility is maximized when the price is p1 (as is done in the single item strategy),
then

E
[
U b
∣∣∣Aε2] ≥ E [U s|Aε2]− C1ε

2.

and

E
[
U b1Aε2

]
≥ E

[
U s1Aε2

]
− C1ε

2P [Aε2] . (12)
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3. Let Aε3 be the event that (V1, V2) ∈ [0, p1) × [p2 − ε,∞). In this region the bundle is not
bought, and neither does customer 1 buy an item on their own, in either strategies. Customer
2, however, buys in both strategies. Therefore the seller’s utility is identical in this region:

U s1Aε3 = U b1Aε3

and

E
[
U b1Aε3

]
= E

[
U s1Aε3

]
. (13)

4. Let Aε4 be the event that (V1, V2) ∈ [p1, p1 + ε)× [p2 − ε, p2). In this case we note that

E
[
U b1Aε4

]
= E

[
U b
∣∣∣Aε4]P [Aε4] ,

and

E
[
U s1Aε4

]
= E [U s|Aε4]P [Aε4] .

Now, since we assumed that the distribution of (V1, V2) is non-atomic and since both U b and
U s are bounded then there exists a constant C such that for ε small enough it holds that
P [Aε4] < Cε2, and so there exists a constant C2 such that

E
[
U b1Aε4

]
≥ E

[
U s1Aε4

]
− C2ε

2 (14)

for ε small enough.

5. Finally, let Aε5 be the event that (V1, V2) ∈ [p1 + ε,∞) × [p2 − ε, p2). Here in the single
customer strategy customer 1 buys an item for p1 and customer 2 does not buy. In the
bundling strategy the customers purchase a bundle for p1 + p2. Hence

E
[
U s1Aε5

]
= p1P [Aε5]

and

E
[
U b1Aε5

]
= (p1 + p2)P [Aε5] .

Since the distribution of (V1, V2) is supported on [0,M ]2, and since p2 > 0 (see note at the end
of Section 2.1.1), then there exists a constant C3 such that for ε small enough P [Aε5] > C3ε.
Hence

E
[
U b1Aε5

]
≥ E

[
U s1Aε5

]
+ p2C3ε. (15)

for ε small enough.

Since the events {Aεi} are disjoint and since P [∪iAi] = 1 then

ub = E
[
U b
]

=
5∑
i=1

E
[
U b1Aεi

]
,

with a similar expression for us. Therefore, as a conclusion of Eqs. (11), (12), (13), (14) and (15)
we have that for ε small enough

ub(p1 + ε, p2, p1 + p2) ≥ us(p1, p2)− (C1P [Aε2] + C2)ε2 + p2C3ε,

and therefore for ε small enough

ub(p1 + ε, p2, p1 + p2) > us(p1, p2).
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Proof of Theorem 3.2. Consider the bundling strategy with individual prices ai =∞ for all i ∈ [n]
(i.e., no single item sales) and b = µ− 2M

√
n log n. In this case the customers will either buy the

bundle if its cost is less than the sum of their valuations, and buy nothing at all otherwise. Denote
the sum of their valuations by V =

∑n
i=1 Vi.

Since Vi ∈ [0,M ] then E
[
V 2
i

]
≤M2. Hence by a version of Bernstein’s inequality [4]5 we have

that,

P [V < b] ≤ exp

(
− 4M2n log n

2M2n+ 2M2
√
n log n/3

)
and hence

P [V < b] ≤ 1

n
.

Since the customers buy the bundle when V ≥ b then the seller’s expected utility equals
P [V ≥ b] b and it holds that

P [V ≥ b] b ≥
(

1− 1

n

)(
µ− 2M

√
n log n

)
.

Since fi > δ in the interval [0,M ] then E [Vi] > Mδ/2 and µ > nMδ/2, and so it holds that

P [V ≥ b] b ≥
(

1− 1

n

)(
1− 4

δ

√
log n

n

)
µ

≥
(

1− 4

δ

√
log n

n
−O

(
1

n

))
µ,

where the second inequality follows from the fact that µ ≥ nε.
Since the optimal strategy yields at least as much utility to the seller as this one, then

max
ā,b

u(ā, b) ≥
(

1− 4

δ

√
log n

n
−O

(
1

n

))
µ.

5 Conclusion

We showed how sellers may maximize profits by offering bundles of items to rational groups of
customers. Our work suggest a number of future research directions we wish to mention.

5We use the following version of Bernstein’s inequality: Let X1, . . . , Xn be independent random variables such
that E [Xi] = 0 and |Xi| < M for all i. Then for any t > 0 it holds that

P

[∑
i

Xi > t

]
≤ exp

(
− t2/2∑

i E [X2
i ] + Mt/3

)
.
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5.1 Optimal auctions and optimal profit

Our results show that it suffices to bundle pairs of customers to increase profits under mild condi-
tions, and that if the customers are bundled in large groups it is possible to extract profit which
approaches the theoretical bound, as the group size increase. For example - assume that there
are N individuals - N/2 are paired into rational groups, another N/3 are partitioned into rational
groups of size 3, and the rest N/6 are partitioned into rational groups of size 6. Assuming that all
valuations are drawn i.i.d. from the same distribution F - what is the optimal auction and by how
much is it better than the single item auction?

5.2 Overlapping Rational Groups and Social Networks

The problem presented in the previous subsection can be generalized further to a situation where
an individual may belong to more than one rational group: for example an individual may belong
to a family and to a small start-up company. The two groups are rational and are offered different
bundles. Understanding the optimal auction in this setup and its relationship to the social network
structure is, in our opinion, an interesting open problem.
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