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While randomized controlled experiments are often considered the gold standard for
predicting causal relationships between variables, they are expensive if one is inter-
ested in understanding the complete set of causal relationships governing a large set
of variables and it may not be possible to manipulate certain variables due to ethical
or practical constraints. To address these scenarios, procedures have been developed
which use conditional independence relationships among variables when they are pas-
sively observed to predict which variables may or may not be causally related to other
variables. Until recently, most of these procedures assumed that the data consisted of
a single i.i.d. dataset of observations, but in practice researchers often have access to
multiple similar datasets, e.g. from multiple labs studying the same problem, which
measure slightly different variable sets and where recording conventions and procedures
may vary. This paper discusses recent state of the art approaches for predicting causal
relationships using multiple observational and experimental datasets in these contexts.

1. Introduction

In many domains researchers are interested in understanding the causal relation-
ships which govern a set of variables in order to better understand the underlying
systems governing those variables and to predict the effects of interventions on those
variables. While randomized controlled experiments are often considered the gold
standard for predicting causal relationships between variables, these methods are ex-
pensive if one is interested in understanding many different potential causal relation-
ships among a large set of variables, and it is often not possible to manipulate certain
variables due to ethical or practical constraints. For these scenarios researchers have
developed methods which consider the conditional independence relations between
variables when they are passively observed, or equivalently, how the joint distribution
among those variables can be factored, to establish which variables may or may not be
causally related and to predict the results of potential interventions on those variables
(Spirtes et al., 2000; Pearl, 2000; Chickering, 2002; Tsamardinos et al., 2006).

Most of these algorithms assume that the data are collected in a single dataset,
possibly with some values that are missing at random. While the availability of large
amounts of data continues to increase, researchers are not always able to obtain a
single dataset measuring every variable of interest; it is often, however, the case that
several datasets are available which each measure subsets of these variables. For ex-
ample, models of the United States and United Kingdom economies share some but
not all variables, due to different financial recording conventions; fMRI studies with
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similar stimuli may record different variables, since the images vary according to mag-
net strength, data reduction procedures, etc., and U.S. states report some of the same
educational testing variables, but also report state-specific variables (Tillman et al.,
2009). Similarly, even if a researcher is able to obtain a single dataset which measures
every variable of interest, he or she may wish to combine this dataset with several
similar datasets which measure slightly different variable sets to produce a more reli-
able result. Recently, newer algorithms have been developed for these scenarios which
predict causal relationships from multiple datasets which measure similar variable
sets when it is assumed that the underlying causal relationships among variables are
the same across datasets (Tillman, 2009; Ramsey et al., 2010; Tillman et al., 2009;
Triantafillou et al., 2010; Tillman and Spirtes, 2011; Eberhardt et al., 2010; Claassen
and Heskes, 2010; Hyttinen et al., 2013b). This paper discusses recent state of the
art approaches to these problems and their practical performance and limitations.
The algorithms mentioned above use directed graphs to depict causal relationships
among a set of variables. Section 2 first provides the necessary formal background
and notation to understand these algorithms and the results they output. Section 3
then describes some of the traditional algorithms for predicting causal relationships
from a single observational dataset. In Section 4, we discuss the case where a single
dataset measuring every variable of interest exists, but other datasets, which may or
may not measure all of these variables also exist and the researcher would like to take
advantage of this additional information. In Section 5 we then discuss the harder
problem where multiple datasets are available which measure similar variable sets,
but no dataset exists which measures the complete set of variables of interest. Sec-
tion 6 then discusses procedures that can be used when multiple datasets are available
where some variables have been experimentally manipulated and others are passively
observed. Finally, Section 7 offers conclusions and directions for future research.

2. Background

We now introduce some terminology. A directed graph G = (V, ) is a set of nodes
V and a set of directed edges £ connecting distinct nodes. Directed graphs are useful
in the context of predicting causal relationships among a set of variables because each
variable can be considered a node in a directed graph where a directed edge from X
into Y indicates that X is a direct cause of Y (relative to the set of nodes V). If
two nodes are connected by an edge then the nodes are adjacent. For pairs of nodes
{X,Y} CV, X is a parent of Y and Y is a child of X if there is a directed edge
from X to Y in £. A trail in G is a sequence of nodes such that each consecutive
pair of nodes in the sequence is adjacent in G and no node appears more than once
in the sequence. A trail is a directed path if every edge between consecutive pairs of
nodes points in the same direction. If there is a directed path from X to Y (all edges
point towards Y'), then X is an ancestor of Y and Y is a descendant of X. Adjg,
Paé , Chy, Ang , and Deé refer to the sets of only those nodes that are adjacencies,
parents, children, ancestors, and descendants of X in G, respectively. G contains a
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(a) (b) ()
Figure 1: Two Markov equivalent DAGs (a) and (b) and their corresponding PDAG

directed cycle between two nodes X and YV if X — Y is an edge in £ and Y € Ang.
G is a directed acyclic graph (DAG) if it does not contain any directed cycles between
any pair of distinct nodes. Figure 1 (a) and (b) show examples of DAGs.

Directed graphs are also useful in the context of predicting causal relationships
because we can relate graph theoretic properties to properties of an associated joint
probability distribution. A joint probability distribution P over variables represented
as nodes in V obeys the local Markov property with respect to a DAG G = (V,€)
if every variable is conditionally independent of its nondescendents in G given its
parents in G. The local Markov property is equivalent to a global Markov property
(Lauritzen et al., 1990) which relates more general conditional independence relation-
ships among variables represented as nodes in the graph to a graph theoretic criterion
known as d-separation, which we define below. A wv-structure (collider) is a triple of
nodes (X,Y, Z) such that X and Z are parents of Y. If X and Y are not adjacent in
a v-structure (X,Y, Z), then (X,Y, Z) is an immorality (unshielded collider).

Definition 2.1 (Active trail). A trail (V4,...,V,) in a DAG G = (V,€) is active
given Z C V\{V1,V, } if the following hold for 1 <i <n

(i) if V; € Z, then (V;_1,V;,Viy1) is a v-structure, and

(ii) if (V;—1,V;,Vis1) is a v-structure, then either V; € Z or there exists some
X € Dej such that X € Z.

Definition 2.2 (D-separation). For disjoint sets of nodes X, Y and Z, we say that
X and Y are d-separated given Z, denoted dsepg(X,Y|Z), if and only if there are no
active trails between any X € X and any Y € Y given Z. Otherwise, X and Y are
d-connected given Z, denoted —dsepg(X,Y|Z).

The global Markov property states that if X is d-separated from Y given Z in G,
then X is conditionally independent of Y given Z in P (denoted as X 1L Y | Z)
(Pearl, 1988). The local and global Markov properties are equivalent to the following
factorization of the joint distribution P.
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(a) (b
Figure 2: Two Markov equivalent MAGs (a) and
is both a MAG and a DAG.

)
(b) and their corresponding PAG. Note that (b)

PV)=[[ P (X|Pa§) (1)

Xey

A related property is faithfulness, which is the converse of the global Markov prop-
erty. he faithfulness property holds when all conditional independences observed in
the joint distribution P are entailed by the global Markov property, i.e. for disjoint
sets of nodes, X, Y and Z, it holds that X is d-separated from Y given Z in G
whenever X is conditionally independent of Y given Z in P (Spirtes et al., 2000).
Meek (1995b) shows that the faithfulness property holds in almost all multinomial
distributions which obey the Markov properties, i.e. the set of unfaithful distributions
has Lebesgue measure 0. When the Markov and faithfulness properties both hold for
G, conditional independence and d-separation are equivalent.

While DAGs provide a simple representation for causal relationships among vari-
ables which are observed, there is no straightforward way of using DAGs to represent
dependencies among variables which are due to unmeasured confounding variables,
i.e. an unmeasured variable U which is a cause of two or more measured variables
X and Y. In general it may be wise to consider that such dependencies occur, since
important variables may not have been measured, but such dependencies will almost
certainly be present when dealing with multiple datasets where only a subset of some
variables of interest are measured in each dataset. We thus need a richer type of
graphical structure to represent these dependencies for instances where we do not
assume the absence of unobserved confounding variables. Maximal ancestral graphs
(MAGs) are mized graphs, i.e. consisting or directed, undirected, and bidirected edges,
which can be used to represent causal relationships among a set of variables and de-
pendencies due to unobserved confounding variables. They are a natural extension
of DAGs, which are special cases of MAGs where all edges are directed. Bidirected
edges in MAGs indicate that the corresponding nodes have an unobserved common
cause. Undirected edges are used to indicate that the corresponding nodes have an
association due to the presence of sample selection bias!). Figure 2 (a) and (b) show

1) See Zhang (2007) for an example, though we will not consider sample selection bias in detail in this
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examples of MAGs. Below, we define MAGs formally. A mixed graph G contains an
almost directed cycle between two nodes X and YV if X < YV isin £ and Y € Ané.
X and Y are spouses in G if they are connected by a bidirected edge.

Definition 2.3 (Inducing path). A trail (V4,...,V,) CVina MAG G = (V,€) is an
inducing path between V; and V), relative to Z C V if the following hold for 1 < i <n
(i) it V; ¢ Z, then (V;_1,V;, Viy1) is a v-structure, and
(ii) if (Vi_1,V;, Vi) is a v-structure, then V; € An‘g/1 U An‘g/”.

Definition 2.4 (Maximal ancestral graph (MAG)). A mixed graph G = (V, &) is a
mazimal ancestral graph (MAG) if the following hold

(i) G does not contain any directed cycles or almost directed cycles,
(ii) for any undirected edge X —Y in G, X and Y have no parents or spouses, and

iii) for distinct pairs of nodes {X,Y} C V, if X and Y are not adjacent in G, then
.
G contains no inducing paths between X and Y with respect to &.

The first two conditions in the above definition simply extend the acyclicity property
of DAGs to MAGs. The third condition ensures that MAGs have a criterion simi-
lar to d-separation connecting their topology to individual conditional independence
relations, which we define below.

Definition 2.5 (Active trail). A trail (V1,...,V,) in a MAG G = (V,€) is active
given Z C V\{V1,V, } if the following hold for 1 <i < n

(i) ifV; € Z, then (V;_1,V;,Viy1) is a v-structure, and

(ii) if (V;—1,V;,Vis1) is a v-structure, then either V; € Z or there exists some
X e Deg’ such that X € Z.

Definition 2.6 (M-separation). For disjoint sets of nodes X, Y and Z, we say that
X and Y are m-separated given Z, denoted msepg(X,Y|Z), if and only if there are
no active trails between any X € X and any Y € Y given Z. Otherwise, X and Y
are m-connected given Z, denoted —msepg(X,Y|Z).

If a MAG consists of only directed edges (it is a DAG), then m-separation reduces to
d-separation. A MAG essentially represents the collection of DAGs over the observed
and unobserved variables represented by the MAG which have the same d-separation
and ancestral relations among the observed variables (Zhang, 2008).

3. Traditional algorithms for learning causal structure from a single
observational dataset

Since d-separation/m-separation and conditional independence are equivalent when

paper.
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the Markov and faithfulness properties hold, many algorithms for predicting causal re-
lationships attempt to search for a graph where either the d-separation/m-separation
relationships are consistent with the conditional independences observed in the data
or the factorization of the joint probability distribution according to the graph topol-
ogy given in Section 2 maximizes a score function based on the penalized data log-
likelihood. Algorithms exist which are asymptotically guaranteed to return a graph
which is consistent with the true conditional independences and dependences under
different assumptions. Such graphs, however, are not, in general, unique. Two graphs
which entail exactly the same sets of conditional independences are said to be Markov
equivalent. The goal of algorithms which employ these types of methods to predict
causal relationships is thus to learn the set of graphs that are Markov equivalent for
the observed conditional independences, i.e. the Markov equivalence class, and identify
features that are common across all of these graphs to predict causal relationships.

One of the first and most straightforward of these algorithms is the SGS (Spirtes
et al., 2000) or IC (Pearl, 2000) algorithm, which will provably (in the large sample
limit) return a set of DAGs which contains the true causal structure whenever (i) the
Markov and faithfulness properties hold, (ii) there are no unobserved variables which
are common causes of observed variables, and (iii) there are no directed cycles in the
true causal structure, i.e. it is a DAG. The returned set is the smallest set that can be
distinguished using conditional independence information alone. In practice, rather
than returning a set of DAGs, it is possible to use a more compact representation
of this set, referred to as a PDAG, since all DAGs in the same Markov equivalence
class have the same adjacencies and immoralities (Verma and Pearl, 1990). A PDAG
is a mixed graph consisting of directed and undirected edges where a directed edge
X — Y indicates that X directly causes Y and an undirected edge X — Y indicates
that either X causes Y or Y causes X (not to be confused with an undirected edge
of a MAG!). Figure 1 shows two Markov equivalent DAGs and the corresponding
PDAG.

The SGS/IC algorithm learns a PDAG from data by performing all possible con-
ditional independence tests among all observed variables. Algorithm 1 formally de-
scribes the SGS/IC algorithm. The algorithm begins with the undirected complete
graph, where all variables are adjacent to each other via an undirected edge. The
results of conditional independence tests are then used to discover the correct set of
adjacencies and immoralities (which defines the Markov equivalence class) and a set
of correct and complete orientation rules described in Meek (1995a) are applied to
make some additional edge orientations, e.g. to ensure no additional immoralities can
be formed by orienting undirected edges in the graph. This algorithm is not practical,
however, because it is both computationally intractable, since the number of con-
ditional independence tests that must be performed is exponential in the number of
variables, and not statistically robust, since conditional independence tests become in-
creasingly unreliable as the size of the conditioning set grows. Thus, the current state
of the art structure learning algorithms based on conditional independence tests try
to limit the number of conditional independence tests that are performed and specif-
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ically avoid tests with large conditioning sets. In the PC algorithm (Spirtes et al.,
2000), instead of searching all subsets of V\{V;,V;} for an S such that V; L V} | S,
the algorithm initially sets S = @ for all {V}, V;} pairs, and checks to see if any edges
can be removed based on the results of conditional independence tests with these S
sets. It then iteratively increases the cardinality of sets S considered in the checks
for edge-removal until there are no nodes that are adjacent to a greater number of
nodes than the current cardinality of S sets considered. Additionally, the only S sets
that are considered are those consisting of subsets of nodes adjacent to V; or V; at
the current iteration of the algorithm. The PC algorithm learns the correct PDAG in
the large sample limit when the Markov and faithfulness conditions hold, there are no
unobserved common causes, and there are no directed cycles in the true causal struc-
ture. Algorithms which use conditional independence tests to learn graphs whose
structure predicts causal relationships, such as SGS/IC and PC, are referred to as
constraint-based causal structure learning algorithms.

Input : Observed data for variables in V
Output: PDAG G over nodes V

1 G « the complete undirected graph over the variables in V

2 For {V;,V;} CV,if 3S C V\{V;, V;}, such that V; L V; | S, remove the edge between V;
and Vj

3 For {V;,V;,Vi} C V such that V; and V; are adjacent and V; and Vj, are adjacent, but V;
and Vj, are not adjacent, if S C V\{V;, V;, Vi.}, such that Vi I Vj, | {S UV}, orient the
edges between V; and V; and between V; and Vi to make (V;, V;, Vi) an immorality

4 Make any additional edge orientation to prevent additional immoralities and directed
cycles from being formed when orienting undirected edges using the rules given in Meek
(1995a)

Algorithm 1: SGS/IC algorithm

The FCI algorithm (Spirtes et al., 1995) is a constraint-based algorithm similar
to the PC algorithm, but does not require assuming that there are no unobserved
common causes. The FCI algorithm returns an equivalence class of MAGs instead of
an equivalence class of DAGs. The true causal structure, represented as a MAG, will
provably be included in the output set of FCI (in the large sample limit) whenever
the Markov and faithfulness properties hold and there are no directed cycles in the
true causal structure. Due to a result from Zhang (2007) characterizing the structural
features of Markov equivalence classes of MAGs, a compact structure referred to as
a partial ancestral graph (PAG) (Richardson and Spirtes, 2002; Zhang, 2007) can be
used to represent the graphs output by FCI. PAGs are mixed graphs with a third type
of edge endpoint, o. Whenever an edge has a o-marked endpoint this indicates that
there is at least one MAG in the Markov equivalence class that has an arrowhead at
that endpoint and at least one such MAG that has a tail at that endpoint (Zhang,
2007). Figure 2 shows two Markov equivalent MAGs and the corresponding PAG.

Score-based algorithms take a different approach to learning causal structure.
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Score-based algorithms consider the factorization of the joint probability distribu-
tion equivalent to the Markov property given in Section 2 and search for a graph
which maximizes some score function (usually a penalized data log-likelihood based
score) when the score is decomposed according to the graph structure using this fac-
torization. The Greedy Equivalence Search (GES) algorithm (Chickering, 2002) is a
score based algorithm for learning causal structure that searches over the space of
PDAGs. GES learns the correct PDAG in the large sample limit when the Markov
and faithfulness properties hold, there are no unobserved common causes, the true
causal structure does not contain directed cycles, and a score function is used, which
has a property referred to as local consistency which we define below.

Definition 3.1 (Locally consistent score). Let S(G,P) be the score assigned to the
factorization of the joint probability distribution P entailed by some DAG G and let
‘H be a DAG which does not entail the correct factorization of the joint probability
distribution. S is locally consistent if it has the following two properties:

(i) Let H be the result of adding an edge to H which eliminates an independence
constraint entailed by H that is not true in P. Then S(H',P) > S(H,P).

(ii) Let H' be the result of adding an edge to H which eliminates an
independence constraint entailed by H that is true in P. Then

S(H',P) < S(H,P).

The BDeu and BIC scores are two popular locally consistent scores for discrete multi-
nomial and multivariate Gaussian distributed data, respectively (Heckerman et al.,
1995). The GES algorithm is a two stage greedy search procedure. In the first stage,
edges are iteratively added to the empty graph and certain types of edges are reversed
to increase the current score until doing so no longer increases the score. In the second
stage, edges are then iteratively removed and certain edges are reversed to increase
the current score until doing so no longer increases the score. In the large sample limit
this greedy approach is guaranteed to return the highest scoring PDAG. In general,
score-based structure learning is an NP-complete problem (Chickering, 1995), but for
most problems with up to 50 variables, this does not seem to be an issue for GES in
practice.

Instead of a greedy approach, more recent score based procedures based on the dy-
namic programming approach described in Koivisto and Sood (2004) are exact: They
return a DAG that maximizes the posterior probability, from which the corresponding
PDAG can be determined easily. Their worst-case runtime grows “only” exponentially
in the number of variables (Koivisto and Sood, 2004; Silander and Myllymaki, 2006;
Parviainen and Koivisto, 2009). Unlike GES, however, these methods are not “any-
time” algorithms, i.e. they only produce an optimal structure once the search has
been completed, while GES can be stopped at any point to obtain the highest scoring
structure found so far at that point in the search. de Campos et al. (2009) proposes
a branch and bound based score-based learning procedure that is both an anytime
algorithm and has the same optimality guarantees as Koivisto and Sood (2004) and
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the related dynamic programming approaches. Jaakkola et al. (2010) proposes a sim-
ilar approach with both of these properties which searches for the optimal structure
by solving a series of linear programs.

A significant disadvantage of score-based causal inference procedures is that they
require the assumption that there are no unobserved confounding variables; there is
no score-based equivalent of the constraint-based FCI algorithm. While it is possi-
ble to score MAGs when data have multivariate Gaussian distributions (Silva and
Ghahramani, 2009), there are a number of issues which make score-based searches for
PAGs more difficult than for PDAGs (Richardson et al., 1999; Claassen and Heskes,
2012). We know of no general consistent score-based algorithms for learning PAGs.

The Max-Min Hill-Climbing (MMHC) algorithm (Tsamardinos et al., 2006) is a re-
cent state of the art algorithm for learning causal structure which uses both constraint-
based and score-based methods. First, constraint-based methods are used to find
candidate sets of possible parents and children for each variable. Then, score-based
methods are used to combine these candidate sets and find a graph which maximizes
a score function. MMHC learns the correct PDAG in the large sample limit when the
Markov and faithfulness properties hold, there are no unobserved common causes, the
true causal structure does not contain directed cycles, and a locally consistent score
function is used.

4. Learning from multiple datasets which measure the same variables

It is often the case that researchers have access to multiple observational datasets
which record the same variables, e.g. datasets from different labs studying the same
problem. When learning causal structure from such data, it can be advantageous to
use all of the data from each dataset since this may produce a more reliable result than
a single dataset due to the increased total sample size. In the simplest case, where
every dataset measures exactly the same variable set, researchers may be tempted to
simply concatenate these datasets into a single dataset, possibly after applying some
type of standardization procedure to each dataset, and then apply one of the causal
structure learning algorithms described in Section 3 to this combined dataset. Even
when it can be assumed that the causal relationships governing the recorded variables
in each dataset are the same, the use of different types of recording instruments and
procedures as well as other factors can lead to slight differences in the joint distri-
butions each dataset is sampled from. When this is the case, statistical problems,
such as spurious associations, frequently result when the data are concatenated in
this manner. Tillman (2009) found that in these contexts, using the PC algorithm
with a concatenated dataset leads to poor results, in some cases worse than simply
using one of the individual datasets used to produce the concatenated dataset.

Tillman (2009) proposes a different constraint-based procedure, which incorporates
methods used in meta-analyses, for learning causal structure from multiple datasets
when each dataset measures the same variable set. Meta-analyses use statistical pro-
cedures to combine results from multiple independent experiments and obtain a global
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assessment of whether certain effects may be present in the population. One of the
most common and convenient ways of doing this involves combining the experimenters’
reported p-values from a group of independent studies into a new test statistic which
is then used to decide whether the null hypothesis each experimenter is investigating
should be rejected (Sutton et al., 2000). Since all that is being combined are the
p-values associated with different statistical tests on different datasets, these meth-
ods are not affected by differences in the distributions across different experiments,
provided the same variables are manipulated in each experiment.

A naive method for combining p-values, which is sometimes used in the literature,
is to simply average the individual p-values. This average can then be compared to the
original « threshold for rejecting the null hypothesis in a single hypothesis test with a
specified type I error rate. This averaging procedure, however, fails to take advantage
of the fact that each p-value constitutes an independent source of information; un-
likely evidence from multiple sources is more compelling than unlikely evidence from a
single source and should thus lower the overall combined p-value (Tillman, 2009). For
example, assume we set a = .05 and we observe p = .06 in two separate experiments.
The average p-value is thus .06 which fails to reject the null hypothesis even though
it is much less likely that we would observe p-values this extreme and this close to
the « threshold in two independent experiments than in a single experiment. A more
statistically appropriate way of combining these results would take this into account
and likely result in the rejection of the null hypothesis.

Fisher (1950) introduced a theoretically sound method for combining p-values from
multiple experiments into a new test statistic. This method, which we will refer to as
Fisher’s method combines p-values into the following test statistic:

K
Tr = —QZIOg(M)~ (2)

Ty has a x? distribution with 2k degrees of freedom under the null hypothesis, where
k is the number of p-values combined, which follows from the fact that p-values have a
standard Uniform distribution under the null hypothesis. We can thus compare T to
the x3, quantile function to make the rejection decision. When two low p-values are
combined, Fisher’s method results in a much lower combined p-value, unlike taking
the average. Simulation studies have found that Fisher’s method, in general, per-
forms better than similar competing methods for combining p-values that have been
investigated in the literature, and satisfies an optimality criterion known as Bahadur
efficiency (Bahadur, 1971), which is related to the effective use of data as the number
of samples increases (Lazar et al., 2002).

The method proposed in Tillman (2009) shows how any constraint-based causal
structure learning algorithm can be adapted to learn from multiple datasets which
measure the same variable set by replacing each conditional independence test that
would be performed by the algorithm with a method for combining p-values, such as
Fisher’s method, with the p-values that are associated with performing conditional
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independence tests using each individual dataset. Tillman (2009) found that this
method, when used to modify the PC algorithm, results in a significant increase in
performance when compared to applying the PC algorithm to a single dataset or
to a concatenated dataset. Tillman (2009) found that Fisher’s method outperforms
other competing methods for combining p-values, which is consistent with the results
described in Lazar et al. (2002) when these methods are used in other contexts.
While the method proposed in Tillman (2009) is designed for cases where each
dataset measures the same variable set, it can be adapted to cases where the variable
sets are not the same, provided at least one dataset measures every variable that is
measured in any of the datasets (or some variables can be excluded to ensure that this
condition is satisfied.) This condition is required since it is not possible to perform
certain conditional independence tests, which may be required by a causal structure
learning algorithm like PC, when some variables are never jointly measured in a single
dataset. Section 5 discusses alternative algorithms specifically designed for cases when
this condition is not satisfied. Tillman and Spirtes (2011) provide a generalization of
the conditional independence testing procedure using combined p-values with Fisher’s
method given in Tillman (2009), which we give below as Algorithm 2. This general-
ization permits conditional independence testing using as many datasets as possible
for a particular conditional independence query whenever the variables involved in a
particular test are jointly measured in at least one dataset. Fx_ﬁl is used to represent

the x? quantile function with k degrees of freedom.

Input : Set of datasets D, variables X,Y,Z to test X L Y|Z, significance level «
Output: reject or fail to reject the conditional independence hypothesis

k0
foreach D; € D do
if X,Y and Z are all measured in D; then
p; < the p-value associated with the test X 1 Y|Z using D;
‘ k—k+1
else
| pi— 1
end

© 0N O oA WN

end
k
3 . 71 —
10 if —QZlog(pz) < Fxgk(l a) then
i1
11 | return fail to reject
12 else
13 | return reject
14 end

Algorithm 2: Test Conditional Independence

Ramsey et al. (2010) proposes a score based procedure for learning causal structure
using multiple datasets which measure the same variable set. Ramsey et al. (2010)
shows that the BIC score can be modified so that the log-likelihood component can
be replaced with the average of several log-likelihood scores from different datasets
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without compromising the local consistency property of the BIC score. Thus, GES
can be used with this modified BIC score to learn causal structure using multiple
datasets. Ramsey et al. (2010) uses this modified GES procedure to learn cascades
of activity between different brain regions from a collection of datasets which each
correspond to multiple fMRI BOLD readings for a different individual. While the
procedure they describe assumes that each dataset measures exactly the same vari-
able set and contains the same number of samples, the procedure works in practice
with slight further modifications to the BIC score when sample sizes are not constant
or some variables are missing from some datasets, but there is at least one dataset
which measures every variable.

5. Learning when no dataset measures the full set of variables

When a researcher is interested in learning the causal structure for a set of variables
which span across multiple datasets, but no single dataset exists which measures all
of these variables, it may not be possible to test every conditional independence fact
that is needed by a constraint-based causal structure learning algorithm designed for
a single dataset, e.g. we cannot test whether X 1 Y if there are no datasets where X
and Y are jointly recorded. We thus cannot simply modify existing constraint-based
procedures to permit causal structure learning from multiple datasets as described
in Section 4 in this context. Furthermore, the causal structure we can learn from
such data will be more underdetermined than in the case of a single dataset since
the PDAG or PAG structures produced by the algorithms described in Section 3 rep-
resent a Markov equivalence class, which describes all conditional independence and
dependence relationships among a set of variables, and some conditional independence
facts will be untestable in this context. While it is not possible, in general, to learn
a unique PDAG or PAG in these contexts, the conditional independence information
that is available can be used to learn a set of possible PDAGs or PAGs, one of which
will be the correct PDAG or PAG in the large sample limit when the Markov and
faithfulness conditions hold.

Tillman et al. (2009) proposed the first procedure for learning from multiple
datasets in this context, the Integration of Ouverlapping Networks (ION) algorithm.
ION does not learn directly from datasets, but rather accepts as input a set of PAGs
which have overlapping variables (variables in common) and do not entail contradic-
tory conditional independence information among common variables. Figure 3 (a) and
(b) show two possible input PAGs to ION, where two variables from the true causal
structure (c) were unmeasured in each input source used to generate the PAGs. ION
returns a set of PAGs over the total set of variables that are included in any of the
input PAGs, each of which represents a possible Markov equivalence class over this
variable set that is consistent with all of the Markov equivalence classes represented
by the input PAGs, i.e. for any MAG G represented by an input PAG, every out-
put PAG represents a MAG H over all of the variables in any input PAG such that
marginalizing out the variables in H which are not contained in G produces the MAG
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Figure 3: Two input PAGs to ION (a) and (b) corresponding to the true causal structure (c).

G. To learn from a set of datasets which have some variables in common but where no
dataset measures all of the variables contained in each dataset using ION, one must
first learn a set of PAGs by applying an algorithm for learning a PAG from a single
dataset, such as FCI, to each of the datasets and then input these resulting PAGs
to ION. Since the output of ION is a set of PAGs over the combined set of input
variables, ION is appropriate even in the case where there are unobserved variables
in addition to the complete set of variables observed in each dataset.

The ION algorithm begins by transferring nonadjacencies and endpoint orienta-
tions to a fully connected PAG over all of the variables where each edge has o-marked
endpoints. The next two stages identify edges to remove and orient as v-structures to
produce a candidate set of PAGs which may be consistent with all of the input PAGs.
The candidate PAGs are then checked to determine whether they entail all of the
m-separations and m-connections that are true in the input PAGs. If this condition
is satisfied, then the candidate PAG is added to the output set.

Tillman et al. (2009) shows that the ION algorithm is sound and complete under the
Markov and faithfulness assumptions, but it is not scalable in practice to very many
variables. One of the most significant issues which limits the practical performance of
ION is the fact that input PAGs, when learned from datasets using an algorithm like
FCI, often contain inconsistent conditional independences and dependences due to
statistical errors. ION attempts to resolve inconsistent conditional independence and
dependence information whenever it is detected by treating the conditional indepen-
dence and dependence relationships which conflict as if they are unknown. However,
since sets of conditional independence facts entail other conditional independences,
it is not always possible to detect inconsistent information. Furthermore, treating
inconsistent conditional independence and dependence facts as unknowns increases
the underdetermination of the final output and significantly increases the algorithm’s
runtime since a larger number of possible structures must be searched over throughout
the course of the algorithm. Another significant limitation of ION is that each candi-
date structure in the final stage of the algorithm is explicitly checked to ensure that
it entails the same m-separation and m-connection facts as each of the input PAGs,
rather than relying on a simpler condition that can be checked more efficiently.

Tillman and Spirtes (2011) proposes the Integration of Overlapping Datasets (10D)
algorithm, which overcomes many of the practical limitations of the ION algorithm.
10D accepts a set of datasets, which have variables in common, but where it is as-
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sumed that no dataset measures all of the variables contained in each dataset, as
input and returns a set of possible PAGs over all of the variables measured in each of
the input datasets as output.

IOD is a constraint-based algorithm and thus relies on the results of conditional
independence tests, but assumes that it is not possible, in general, to perform all of
the conditional independence tests necessary to distinguish a unique PAG that is con-
sistent with each dataset. Since IOD uses a set of datasets as input, it is able to avoid
the problem of inconsistent conditional independence information which ION suffers
from by using Algorithm 2, described above, to obtain any necessary conditional in-
dependence facts. Since Algorithm 2 only requires the p-values associated with the
conditional independence tests used with each dataset to return a result, IOD, like
TION, does not require that the datasets each be sampled according to the same dis-
tribution; IOD, like ION, only assumes that the same underlying causal relationships
govern the variables sampled in each dataset.

The IOD algorithm is based on the theoretical result given below which enables
one to determine whether a possible candidate PAG should be included in the algo-
rithm’s output without checking whether all of the m-separations and m-connections
equivalent to the conditional independence and dependence facts consistent with the
datasets are entailed by the candidate PAG. The result says that if we want to check
whether a MAG over a set of variables is Markov equivalent to some other MAG over
a subset of those variables, we need only check to ensure that the MAG over the larger
variable set has the same m-separations as the MAG over the smaller variable set and
the MAG over the larger variable set has certain inducing paths for each adjacency
in the MAG over the smaller variable set.

Theorem 5.1 (Tillman and Spirtes (2011)). Let G = (V,&) and H = W, F) be
MAGs where W C V and G’ be the MAG which results when the variables V\W are
marginalized from G. H is Markov equivalent to G’ if the following hold for all pairs
{X,Y}CW

(i) for every Z C W\{X,Y}, if msepy(X,Y|Z), then msepg(X,Y|Z), and

(ii) if X and Y are adjacent in H, then G has an inducing path between X and Y
with respect to V\W.

While the first condition above appears difficult to check, a result from Spirtes
et al. (1995) shows that if we check a smaller set of m-separations, referred to as a
sepset, then this is sufficient to ensure that all of the necessary m-separations required
by the condition are entailed. The first stage of the IOD algorithm finds these sepsets
and the necessary inducing paths that must be checked when considering a candi-
date PAG to include in the output set and produces an initial graph with only some
m-separation information encoded. The second stage then uses this initial graph to
generate candidate PAGs and check whether they entail the necessary m-separations
and include the necessary inducing paths. Tillman and Spirtes (2011) shows that this
procedure is correct and complete under the Markov and faithfulness assumptions.
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Figure 4: Edges in fMRI datasets equivalence class

Tillman and Spirtes (2011) shows that the IOD algorithm is much faster and re-
quires less memory than the ION algorithm in practice and overcomes the problems
associated with inconsistent conditional independence information which ION suffers
from through simulations. They also applied the algorithm to datasets resulting from
an fMRI experiment analyzed in Ramsey et al. (2010) where experimenters presented
individuals with pairs of words and asked the subjects whether the words rhymed.
BOLD activity in the following brain regions was recorded in the experiment and
included in each dataset: left occipital cortex (LOCC), left middle temporal gyrus
(LMTGQG), left anterior cingulate (LACC), left inferior frontal gyrus (LIFG), left in-
ferior parietal (LIPL), right occipital cortex (ROCC), right middle temporal gyrus
(RMTG), right anterior cingulate (RACC), right inferior frontal gyrus (RIFG), right
inferior parietal (RIPL). Additionally, an input variable (I) was included in each
dataset which indicates the presentation of rhyming or non-rhyming words. Each
dataset consists of the recordings for a particular individual. Due to individual dif-
ferences and differences in fMRI machine calibration and standardization procedures,
accurate recordings for every brain region were not available for every individual.
Tillman and Spirtes (2011) applied the IOD algorithm to 13 of these datasets where
each dataset contained recordings for 6 to 9 different brain regions. Figure 4 summa-
rizes the IOD output equivalence class by showing every edge that is present in some
MAG in the equivalence and where the darkness of the edges indicates the number
of MAGs that contain the edge (darker edges are included in more MAGs). While
the ground truth is unknown, these results are consistent with domain knowledge
indicating a cascade of interactions on the left side of the brain after the presentation
of the stimulus eventually leading to a cascade on the right side of the brain.

Triantafillou et al. (2010) proposes a different approach to learning causal structure
from multiple datasets or existing PAGs with common variables where no dataset or
PAG measures all of the variables contained in each input dataset or PAG. They show
how the problem of finding a single MAG that entails all of the m-separations and
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m-connections observed in an input set of PAGs can be transformed into a satisfiabil-
ity (SAT) problem. An existing SAT solver (Gomes et al., 2007) can then simply be
used to obtain the solution. Their approach can also be used to determine whether a
MAG exists that is consistent with the set of input PAGs but also has certain specified
edges and endpoint orientations, and if so, produce such a MAG. Thus, one can start
with an initial structure that contains some necessary adjacencies and endpoint ori-
entations and then iteratively use this procedure to find all PAGs over the complete
variable set that are consistent with the set of input PAGs by checking whether a
MAG exists for every possible assignment of unknown edges and endpoint orienta-
tions. Triantafillou et al. (2010) shows that this procedure is more scalable than ION,
in terms of runtime and memory. This approach, however, assumes that there are no
inconsistencies in conditional independences and dependences entailed by the input
PAGs due to erroneous conditional independence test results, which would prevent a
SAT solver from finding any MAGs that are consistent with the input PAGs.

6. Integrating experimental datasets

In many cases, in addition to observational studies, researchers will have performed
small interventional studies, manipulating some subset of the measured variables. If
there are multiple groups of researchers, there may be multiple experimental datasets
in which different sets of variables have been manipulated. Given the causal inference
methods for multiple datasets described in the previous sections, the insights gained
from experiments should not go unused. Experimental results can be enormously
useful to determine the orientation of a causal relationships and, if the intervention
amounts to a randomization of the intervened variable, it can also be used to break
confounding due to unobserved variables. In this section we discuss some extensions
and variations of causal inference procedures for multiple datasets that can integrate
datasets where some variables have been manipulated experimentally.

We define an experiment E; = (J;,U;) on a set of variables V; as a partition of V;
into two mutually exclusive and jointly exhaustive sets J; and U;, where Uj; consists of
variables that are passively observed and J; contains the variables that are subject to
a randomization simultaneously and independently. An experiment thus gives rise to
an experimental dataset in which the intervened variables have been (repeatedly) ran-
domized independently to different values and the remaining variables are measured.
Experiments of this type (resembling randomized controlled trials) are often referred
to as surgical interventions because the randomization breaks the causal influence
between each intervened variable and its causes (see Figure 5). The passive obser-
vational setting is trivially included when J;, = @. One can consider other forms of
experiments as well, e.g. fat-hand interventions, where the randomization of multiple
variables are correlated, and experiments in which the intervened variable is not fully
controlled but only “nudged.” An example of the latter would be an intervention on
income where instead of determining the value of income entirely by a randomizing
distribution, one instead only adds, say, $5,000 to the income of the participants in the
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Figure 5: True causal structure (a) and the resulting manipulated structure (b) when Y has been
subject to an intervention.

experiment. In that case the variable income is still influenced by its normal causes,
such as education and not fully controlled by the intervention. We will leave these
types of experimental interventions aside, but the interested reader can pursue the
implications for causal inference in Nyberg and Korb (2006); Eberhardt and Scheines
(2007); Eaton and Murphy (2007) and Claassen and Heskes (2010).

Given a set of datasets obtained from a set of experiments (and observations)
{E1,...,EL} over a set of variables V = Ule V., the causal inference task is to de-
termine as much as possible about the causal structure G over the joint set of variables
V that gave rise to the measured data in the different experiments (and observations).
As in the observational case, discovery methods can be divided into those that presup-
pose that all the (experimental) datasets contain the same variables and only differ in
their intervention sets, i.e. the V; are identical for all 7, but the J; differ, and methods
for the more general case where datasets do not share the same set of variables, i.e.
the V; only overlap and the J; still differ.

The integration of experimental datasets poses two challenges that distinguish it
from the observational case discussed in the previous sections. First, a randomized ex-
periment manipulates the system under investigation. It fully controls the intervened
variables and makes them independent of their non-effects (and of each other). In the
causal structure learning framework this is reflected in the manipulated distribution
and the manipulated causal structure. For example, if the true causal structure is the
graph in Figure 5 (a), then a randomization of Y will break the causal influence of X
on Y, so the manipulated causal structure now is the graph in Figure 5 (b). Corre-
spondingly, the passive observational distribution and the manipulated distributions
are given by

Pobs(X, Y, 2) = P(X)P(Y[X)P(Z]Y)
Prnanin (X, Y, Z) = P(X)P*(Y)P(Z]Y)

where P*(Y") is the randomizing distribution on Y as determined by the intervention
I. Unless the causal structure is known, one cannot simply pool the data (or the
p-values) across different experimental (or observational) datasets, as was done, for
example, in the IOD algorithm in Section 5. Any integration of the experimental
datasets has to keep track of the experimental set-ups, i.e. the partitions into J; and
U; that gave rise to the datasets.

A second difference from the purely observational case is that, given enough exper-
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iments, one can in principle determine uniquely the true underlying causal structure,
as opposed to only an equivalence class. The representations of the equivalence classes
used for observational inference methods (PDAGs and PAGs) are no longer appro-
priate when experimental datasets are considered. In the literature, two different
approaches have been used to handle this situation. The first is to develop a new
representation for the interventional Markov equivalence classes. This works well for
constrained search spaces where one can ensure that the causal structures within one
equivalence class do not differ in too many respects. For more general situations,
however, this is not feasible as the causal structures that are equivalent given the
input datasets, may differ in the orientations of the edges and in their adjacency and
ancestral relations. The alternative is to reduce the detail of the information given
in the output and simply indicate for each possible edge in the graph G, whether it
is present in all graphs consistent with the input dataset, whether it is absent in all
graphs consistent with the input dataset, or unknown, i.e. present in some and absent
in others. Advantages and disadvantages to both approaches are discussed below.

Under the assumptions that (i) the set of variables V; coincide for all i (V; =V for
all 7), (ii) there are no unmeasured common causes, and (iii) the true causal structure
does not contain any directed cycles, Hauser and Bithlmann (2012) have extended the
score-based GES algorithm, described in Section 3, to experimental datasets, calling it
the Greedy Interventional Equivalence Search algorithm (GIES). GIES requires that
the set of experiments is conservative, which means that for all variables in X € V
there is an experiment E;, such that X € U,. For example, one passive observation
of V with J = 0, is sufficient to ensure that the set of experiments is conservative,
but a set of experiments in which X is always subject to intervention is not conser-
vative. The assumption implies that the output of GIES, an interventional Markov
equivalence class, is a refinement of the observational Markov equivalence class out-
put by GES. That is, the interventional Markov equivalence classes that result from
conservative sets of experiments only contain DAGs that share the same skeleton and
the same immoralities, like those output by GES. But in general, GIES will orient
additional edges of the PDAG. Nevertheless, much of the theory can be transferred:
The score can be determined locally for each variable given its parents, and since all
members of the interventional equivalence class have the same skeleton and the same
immoralities, an approach analogous to the one used by the observational GES algo-
rithm can be applied, where the score can be evaluated on the basis of any member
in the equivalence class. GIES builds on the greedy search over equivalence classes of
GES, but adds a third “turning” stage at the end that resolves additional orientations
where possible. Thus, using the arguably rather minor restriction to a conservative
set of experiments, Hauser and Bithlmann (2012) have developed a score-based causal
inference procedure that can integrate different experimental datasets and return an
interventional Markov equivalence class of causal structures (under the assumption
that there are no latent common causes or directed cycles).

When the V; are not identical but only overlapping (analogous to Section 5), per-
haps the most general approach to learning causal structure is described in Hyttinen
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et al. (2013b). Their procedure starts with the independence and dependence re-
lations in the various experimental datasets, encodes the corresponding d-separation
and d-connection relations® as satisfiability constraints on the possible pathways that
must be present (or absent) in the true causal structure over V, and uses a SAT solver
to determine which parts of the underlying graph can be identified. It does not as-
sume that there are no unobserved common causes of the variables in V or that
the underlying causal graph G is acyclic®. Their approach is very versatile: Any d-
separation relation that has been determined in one of the experimental datasets is
encoded as a constraint on the paths that must be absent in the true graph G over the
joint set of variables V. The encoding keeps track of the fact that particular paths
may have been broken due to the interventions that were performed in the experi-
ment that the d-separation relation was inferred from. For example, suppose that
there are three variables V = {X,Y, Z}, but we are considering an experiment E; in
which V; = {X,Z} and E; = (J;,U;) = ({X},{Z}), i.e. X was subject to interven-
tion, Z was observed, and Y was unobserved. Suppose, for purposes of illustration,
it was found that in this experiment, X was d-separated from Z, which we denote
dsepg.p, (X, Z|@). The implication of this d-separation for the underlying graph G
over V is that there cannot be a direct edge X — Z in G, nor can there be a path
viaY,ie. X — Y — Z. These constraints can easily be represented in propositional
form where each term (. — .z) in the propositional formula represents the presence
of an edge in G (not a logical implication):

dsepg p,(X,Z10) = (X = Z)N-[(X = Y)AN (Y — Z)]

The propositional constraint obviously still allows the possibility that, among other
things, there is an unmeasured confounder between X and 7, i.e. X < Z in G, that Y
is a common cause of X and Z, so X «— Y — Z, or that there is a (direct or indirect)
path from Z to X, s0 X «— Z or X «— Y «— Z. All these connections between X and
Z would have been broken by the intervention on X in the experiment, and thus the
detected d-separation between X and Z in experiment F; does not disallow them in
G. If instead of the d-separation, we had found a d-connection between X and Z in
experiment F;, then we would have a constraint on G that required that X — Z in G
or X - Y — Zin G (or both), i.e.

—dsepg (X, Z|@) = (X = Z)V(X = Y)AN (Y — Z)].

Hyttinen et al. (2013b) thus encode any detected d-separation and d-connection as a
constraint on the paths that must or must not be in G. The constraints are proposi-
tionally encoded and a SAT-solver is used to check for each possible edge in G whether

2) The definition of d-separation used by Hyttinen et al. (2013b) is slightly different than Defini-
tion 2.2 used here. It is extended naturally to handle bi-directed edges (for the latent variables) and
experimental set-ups. See also the next footnote.

3) One should note, though, that in the cyclic case the correspondence between independence and
d-separation relations is only known to hold for linear Gaussian models (Spirtes, 1995).
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the constraints imply that the edge is either (i) absent in all causal structures con-
sistent with the constraints, (ii) present in all causal structures consistent with the
constraints, or (iii) unknown, i.e. it is present in some and absent in other causal
structures that are consistent with the constraints. The resulting algorithm is rather
simple: It iterates over the datasets and searches for d-separation and d-connection re-
lations in the order of increasing conditioning set size. The d-separation/d-connection
relations are encoded as propositional constraints on each pass, and the SAT-solver
is used to determine the status of each edge before new constraints are added. Some
simple heuristics are used to avoid performing all possible independence tests.

Since the encoding is done in terms of constraints on the presence or absence of
particular paths in G, it is very easy to include a wide variety of background knowl-
edge in the search procedure. For example, it would be trivial to add the background
knowledge that there is a path from X to Y via Z, without having to specify which
other variables (assuming there are more) are on the path or in what order.

In principle, one could develop a representation of the equivalence class of causal
structures in the output. Hyttinen et al. (2013b) do not pursue this route because
in the case of overlapping datasets, the equivalence classes very quickly become very
large (see the discussion in this regard by Triantafillou et al. (2010) on the size of the
equivalence classes of the ION algorithm in a more restricted search space). Instead,
the SAT-based approach lends itself to answering specific queries: The default output
is the status of each edge in the graph, as described above, but if one were inter-
ested in some other graphical feature, such as an ancestral relation or the presence
of a common effect, then this can also be encoded as a query and determined by the
SAT-solver in light of the constraints that it has obtained.

Like any constraint based procedure, this procedure also suffers when statistical
errors give rise to conflicting d-separation constraints (recall the discussion of the
ION vs. 10D algorithms in Section 5). There are a variety of standard ways in which
such conflicts can be handled, e.g. retract the conflicting constraints and solve without
them, use different thresholds to infer d-separation constraints from d-connection con-
straints, etc., but perhaps the more interesting direction to explore is to use weighted
maxSAT techniques, where the SAT-solver finds solutions that maximize the number
of (weighted) constraints that are satisfied. The details of such an approach are still
under active research.

The approach just described is nonparametric in the sense that it is based only
on d-separation and d-connection relations. This enables a wide applicability of the
search procedure but may undermine how much one can actually infer about the un-
derlying causal structure. For example, Eberhardt et al. (2010) provide an example
where even if one can intervene on each variable individually, the underlying causal
structure cannot be uniquely determined. If one has reasons that support paramet-
ric assumptions, more can be done. In Hyttinen et al. (2012) the authors show how
results from different experiments can be integrated when the causal relations are
assumed to be linear. This approach is extended in Hyttinen et al. (2011) to discrete
models with a so-called noisy-or parameterization. In all these cases one can char-



LEARNING CAUSAL STRUCTURE FROM MULTIPLE DATASETS WITH SIMILAR VARIABLE SETS 61

acterize the conditions that a set of experiments must satisfy in order for the true
causal structure to be uniquely identified. The approaches thus lend themselves not
only to the integration of overlapping experimental datasets, but also to the selection
of what experiment would be the best to do next (see Hyttinen et al. (2013a) for
further discussion).

7. Conclusion

The above sections provide an overview, along with the necessary background in-
formation, of state of the art approaches for predicting causal relationships among
sets of variables when multiple observational and experimental datasets are available
which each measure some or all of these variables. As described in Section 4, existing
constraint-based causal structure learning algorithms can be easily adapted for use in
this scenario if all of the datasets are observational and measure the same variable set
or there is at least one dataset which measures all of the variables contained in each
dataset. Score-based causal structure learning algorithms can also be easily adapted
when all datasets measure the same variable set and have the same number of samples.
These procedures cannot, however, be easily adapted when no dataset measures the
complete variable set and when some variables are subject to experimental manipula-
tions. As described in Section 5, when there are some variables which are never jointly
measured, there is conditional independence information which cannot be tested, so
specialized procedures are necessary to learn as much as can be known about the
Markov equivalence class corresponding to the causal structure which generated the
data. While such algorithms tend to be computationally expensive, in general, more
recent approaches significantly outperform the first algorithm designed for learning
causal structure in this scenario and allow for efficiently querying whether a specific
causal relationship may be consistent with observed conditional independence infor-
mation. Section 6 shows how these procedures can be further generalized when some
variables have been manipulated, but as indicated, the handling of conflicting test
results is still not well understood, as the pooling techniques described for the ob-
servational case cannot be easily transferred to this setting. Given the generality of
this search space, there will also be a need for more search constraints, maybe of a
parametric form, to avoid massive underdetermination.

There are a number of open problems and possible directions for future research in
the area of learning from multiple datasets when no dataset measures the complete
variable set. Developing score based-procedures as general as ION or 10D is com-
plicated by the fact that it is difficult to search over the space of and score PAGs,
as mentioned in Section 3. However, if one is willing to assume that there are no
confounding variables with respect to the complete variable set, it may be possible to
develop a dynamic programming approach to learn a set of PDAGs that have optimal
substructures with respect to the information available that can be scored. Another
possibility is to combine the related methods described in Tsamardinos et al. (2012)
for predicting whether two variables measured in different datasets are conditionally
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and unconditionally dependent in certain contexts with existing search procedures
like IOD to further refine the equivalence classes these procedures produce. Another
area for further research involves developing theoretically sound procedures for re-
laxing constraints when using SAT based search procedures, such as the procedure
described in Triantafillou et al. (2010) to learn all possible PAGs, to make these pro-
cedures easier to apply to real data. All of these current procedures face the problem
that there is no known simple characterization of the equivalence class of causal struc-
tures that they output when there is heavy underdetermination. Developing compact
informative representations for the information contained in these equivalence classes
is an area of research that all of these methods could benefit from. Finally, there
is a need for research in further analyzing the robustness and scalability of these
procedures as well as applying them to many more application areas.
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