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Abstract
Identifying cause-effect relationships between variables of interest is a central problem in science.
Given a set of experiments we describe a procedure that identifies linear models that may contain
cycles and latent variables. We provide a detailed description of the model family, full proofs of
the necessary and sufficient conditions for identifiability, a search algorithm that is complete, and a
discussion of what can be done when the identifiability conditions are not satisfied. The algorithm
is comprehensively tested in simulations, comparing it to competing algorithms in the literature.
Furthermore, we adapt the procedure to the problem of cellular network inference, applying it to
the biologically realistic data of the DREAM challenges. The paper provides a full theoretical foun-
dation for the causal discovery procedure first presented by Eberhardt et al. (2010) and Hyttinen
et al. (2010).

Keywords: causality, graphical models, randomized experiments, structural equation models,
latent variables, latent confounders, cycles

1. Introduction

Inferring causal relationships from data is of fundamental importance in many areas of science. One
cannot claim to have fully grasped a complex system unless one has a detailed understanding of how
the different components of the system affect each other, and one cannot predict how the system will
respond to some targeted intervention without such an understanding. It is well known that a statis-
tical dependence between two measured quantities leaves the causal relation underdetermined—in
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addition to a causal effect from one variable to another (in either or both directions), the dependence
might be due to a common cause (a confounder) of the two.

In light of this underdetermination, randomized experiments have become the gold standard
of causal discovery. In a randomized experiment, the values of some variable xi are assigned at
random by the experimenter and, consequently, in such an experiment any correlation between xi
and another measured variable x j can uniquely be attributed to a causal effect of xi on x j, since any
incoming causal effect on xi (from x j, a common cause, or otherwise) would be ‘broken’ by the
randomization. Since their introduction by Fisher (1935), randomized experiments now constitute
an important cornerstone of experimental design.

Since the 1980s causal graphical models based on directed graphs have been developed to sys-
tematically represent causal systems (Glymour et al., 1987; Verma and Pearl, 1988). In this ap-
proach, causal relations among a set of variables V are represented by a set of directed edges
D ⊆ (V ×V ) connecting nodes in a directed graph G = (V ,D), where a directed edge from node
xi to node x j in the graph represents the direct causal effect of xi on x j (relative to the set of vari-
ables V ). The causal relationships in such a model are defined in terms of stochastic functional
relationships (or alternatively conditional probability distributions) that specify how the value of
each variable is influenced by the values of its direct causes in the graph. In such a model, random-
izing a variable xi is tantamount to removing all arrows pointing into that variable, and replacing
the functional relationship (or conditional probability distribution) with the distribution specified in
the experiment. The resulting truncated model captures the fact that the value of the variable in
question is no longer influenced by its normal causes but instead is determined explicitly by the
experimenter. Together, the graph structure and the parameters defining the stochastic functional
relationships thus determine the joint probability distribution over the full variable set under any
experimental conditions.

The question that interests us here is how, and under what conditions, we can learn (i.e., infer
from data) the structure and parameters of such causal models. The answer to this question depends
largely on what assumptions we are willing to make about the underlying models and what tools of
investigation we consider. For instance, some causal discovery methods require assuming that the
causal structure is acyclic (has no directed cycles), while others require causal sufficiency, that is,
that there are no unmeasured common causes affecting the measured variables. Many algorithms
provide provably consistent estimates only under the assumption of faithfulness, which requires
that the structure of the graph uniquely determines the set of (conditional) independencies that hold
between the variables. For some methods the functional form of the relationships has to take a
certain predetermined form (e.g., linearity). Under various combinations of the above assumptions,
it is possible to consistently infer (at least partial information concerning) the causal relationships
underlying the observed data from non-experimental (‘passive observational’) data (Richardson,
1996; Spirtes et al., 2000; Pearl, 2000; Chickering, 2002a,b; Shimizu et al., 2006).

In many cases, researchers may not be willing to make some of the assumptions mentioned
above, or they may want to guarantee that the full structure of the model is inferred (as opposed
to only inferring an equivalence class of possible models, a common result of many discovery
methods). A natural step is thus to use the power of randomized experiments. The question then
becomes: Under what assumptions on the model and for what sets of experiments can one guarantee
consistent learning of the underlying causal structure. Here, almost all of the existing literature
has focused on the acyclic case (Cooper and Yoo, 1999; Tong and Koller, 2001; Murphy, 2001;
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Figure 1: Classic supply-demand model.

Eberhardt et al., 2005; Meganck et al., 2005; Nyberg and Korb, 2006; Eberhardt and Scheines,
2007; Eaton and Murphy, 2007).

The acyclicity assumption, common to most discovery algorithms, permits a straightforward
interpretation of the causal model and is appropriate in some circumstances. But in many cases
the assumption is clearly ill-suited. For example, in the classic demand-supply model (Figure 1)
demand has an effect on supply and vice versa. Intuitively, the true causal structure is acyclic over
time since a cause always precedes its effect: Demand of the previous time step affects supply of the
next time step. However, while the causally relevant time steps occur at the order of days or weeks,
the measures of demand and supply are typically cumulative averages over much longer intervals,
obscuring the faster interactions. A similar situation occurs in many biological systems, where the
interactions occur on a much faster time-scale than the measurements. In these cases a cyclic model
provides the natural representation, and one needs to make use of causal discovery procedures that
do not rely on acyclicity (Richardson, 1996; Schmidt and Murphy, 2009; Itani et al., 2008).

In this contribution we consider the problem of learning the structure and parameters of linear
cyclic causal models from equilibrium data. We derive a necessary and sufficient condition for
identifiability based on second-order statistics, and present a consistent learning algorithm. Our
results and learning method do not rely on causal sufficiency (the absence of hidden confounding),
nor do they require faithfulness, that is, that the independencies in the data are fully determined
by the graph structure. To our knowledge these results are the first under assumptions that are this
weak. Given that the model space is very general (essentially only requiring linearity), randomized
experiments are needed to obtain identification. While for certain kinds of experimental data it is
easy to identify the full causal structure, we show that significant savings either in the number of
experiments or in the number of randomized variables per experiment can be achieved. All-in-all,
the present paper provides the full theoretical backbone and thorough empirical investigation of the
inference method that we presented in preliminary and abbreviated form in Eberhardt et al. (2010)
and Hyttinen et al. (2010). It establishes a concise theory for learning linear cyclic models with
latent variables.

We start in Section 2 by introducing the model and its assumptions, how the model is to be
interpreted, and how experimental interventions are represented. In Section 3 we derive condi-
tions (on the set of randomized experiments to be performed) that are necessary and sufficient for
model identification. These results provide the foundation for the correct and complete learning
method presented in Section 4. This section also discusses the underdetermination which results
if the identifiability conditions are not met. Section 5 presents empirical results based on thorough
simulations, comparing the performance of our procedure to existing methods. Finally, we adapt
the procedure to the problem of cellular network inference, and apply it to the biologically realistic
in silico data of the DREAM challenges in Section 6. Some extensions and conclusions are given
in Sections 7 and 8.
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Figure 2: An example of a linear cyclic model with latent variables. A non-zero coefficient b21 is
represented in the graph by the arc x1 → x2. Similarly, the non-zero covariance between
disturbances e1 and e2 is represented by the arc x1 ↔ x2. In the graph the disturbance
term for each individual variable has been omitted for clarity. Note that a pair of opposing
directed edges, such as x3 → x4 and x3 ← x4, represents reciprocal causation (feedback
relationship) between the variables, whereas a double-headed arrow, such as x3 ↔ x4,
represents confounding.

2. Model

We start by presenting the basic interpretation of the cyclic model in the passive observational
(Section 2.1) and experimental settings (Section 2.2). We establish canonical forms for both the
model and the experiments to simplify the presentation of the subsequent theory. We then discuss
different stability assumptions to ensure the presence of model equilibria, and show how they relate
to the model interpretation and model marginalization (Section 2.3).

2.1 Linear Cyclic Model with Latent Variables

Following the framework presented in Bollen (1989), we consider a general linear structural equa-
tion model (SEM) with correlated errors as our underlying data generating model. In such a model
the value of each observed variable x j ∈ V ( j = 1, ...,n) is determined by a linear combination of
the values of its causal parents xi ∈ pa(x j) and an additive disturbance (‘noise’) term e j:

x j := ∑
xi∈pa(x j)

b jixi+ e j.

Representing all the observed variables as a vector x and the corresponding disturbances as a vector
e, these structural equations can be represented by a single matrix equation

x := Bx+ e, (1)

where B is the (n×n)-matrix of coefficients b ji. A graphical representation of such a causal model
is given by representing any non-zero causal effect b ji by an edge xi → x j in the corresponding
graph. An example graph and matrix B are shown in Figure 2.

The set of equations is said to be recursive or acyclic if the graph describing the causal relations
has no directed cycles, or (equivalently) if there exists a causal order of the variables for which
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the corresponding matrix B is lower triangular. When the graph contains directed cycles (feedback
loops), such as for the model of Figure 2, then the model is said to be non-recursive or cyclic. In
this paper we do not assume a priori that the underlying model is acyclic. In other words, our model
family allows for both cyclic and acyclic cases.

While in a ‘fully observed’ SEM the disturbance terms ei would be assumed to be indepen-
dent of each other, we allow for unobserved confounding by modeling arbitrary correlations among
the disturbances e1, ...,en. Specifically, denote by µe and Σe the mean vector and the variance-
covariance matrix (respectively) of the disturbance vector e. The diagonal elements ofΣe represent
the variances of the disturbances, while the off-diagonal entries represent the covariances. In the cor-
responding graph a non-zero covariance between ei and e j is represented by the double-headed arc
xi ↔ x j. Notice that in this implicit representation, a latent variable that confounds three observed
variables is represented by three (pairwise) covariances. To keep the notation as simple as possible,
we will adopt the assumption standard in the literature that the disturbances have zero mean, that is,
µe = 0. In Appendix A we show that it is usually possible to transform the observed data to a form
consistent with this assumption. We are thus ready to define the underlying data-generating model:

Definition 1 (Linear Cyclic Model with Latent Variables) A linear cyclic model with latent vari-
ablesM = (B,Σe), is a structural equation model over a set of observed variables x1, · · · ,xn ∈ V
of the form of Equation 1, where the disturbance vector e has mean µe = 0 and an arbitrary sym-
metric positive-definite variance-covariance matrix Σe.

In order to give a fully generative explanation of the relationship between the model parameters
and the data, additional constraints on B are needed. Typically, a cyclic model is used to represent a
causal process that is collapsed over the time dimension and where it is assumed that the data sample
is taken after the causal process has ‘settled down’. The traditional interpretation of non-recursive
SEMs assumes that the disturbances represent background conditions that do not change until the
system has reached equilibrium and measurements are taken. So for a given set of initial values for
the variables x(0), a data vector is generated by drawing one vector of disturbances e from the error
distribution and iterating the system

x(t) := Bx(t−1)+ e (2)

by adding in the constant (with respect to time) e at every time step until convergence. At time t the
vector x thus has the value

x(t) := (B)tx(0)+
t−1

∑
i=0

(B)ie.

For x(t) to converge to an equilibrium, the geometric sequence (Bi)i=0...t and the geometric series
∑t−1i=0Bi must converge as t → ∞. For arbitrary x(0) and arbitrary e, a necessary and sufficient
condition for this is that the eigenvalues λk of B satisfy ∀k : |λk| < 1 (Fisher, 1970). In that case
(B)t → 0 and ∑t−1i=0Bi → (I−B)−1 as t → ∞, so x(t) converges to

x = (I−B)−1e,

where (I−B) is guaranteed to be invertible given the above restriction on the eigenvalues. Notice
that the observed value x at equilibrium is independent of the starting point x(0), and completely
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determined by B and e. Multiple samples of x are obtained by repeating this equilibrating process
for different samples of e. Hence, forM =(B,Σe) the variance-covariance matrix over the observed
variables is

Cx = E{xxT}= (I−B)−1E{eeT}(I−B)−T = (I−B)−1Σe(I−B)−T . (3)

The equilibrium we describe here corresponds to what Lauritzen and Richardson (2002) called a
deterministic equilibrium, since the equilibrium value of x(t) is fully determined given a sample
of the disturbances e. Such an equilibrium stands in contrast to a stochastic equilibrium, resulting
from a model in which the disturbance term is sampled anew at each time step in the equilibrating
process. We briefly return to consider such models in Section 7. We note that if the model happens
to be acyclic (i.e., has no feedback loops), the interpretation in terms of a deterministic equilibrium
coincides with the standard recursive SEM interpretation, with no adjustments needed.

It is to be expected that in many systems the value of a given variable xi at time t has a non-zero
effect on the value of the same variable at time t + 1. (For instance, such systems are obtained
when approximating a linear differential equation with a difference equation.) In such a case the
coefficient bii (a diagonal element of B) is by definition non-zero, and the model is said to exhibit
a ‘self-loop’ (a directed edge from a node to itself in the graph corresponding to the model). As
will be discussed in Section 2.3, such self-loops are inherently unidentifiable from equilibrium data,
so there is a need to define a standardized model which abstracts away non-identifiable parameters.
For this purpose we introduce the following definition.

Definition 2 (Canonical Model) A linear cyclic model with latent variables (B,Σe) is said to be a
canonical model if it does not contain self-loops (i.e., the diagonal of B is zero).

We will show in Section 2.3 how one can obtain the canonical model that yields in all experiments
the same observations at equilibrium as an arbitrary (i.e., including self-loops) linear cyclic model
with latent variables.

2.2 Experiments

As noted in the introduction, one of the aims of inferring causal models is the ability to predict how
a system will react when it is subject to intervention. One key feature of linear cyclic models with
latent variables is that they naturally integrate the representation of experimental manipulations, as
discussed in this subsection.

We characterize an experiment Ek = (Jk,Uk) as a partition of the observed variables V (i.e.,
Jk∪Uk =V and Jk∩Uk = /0) into a set Jk of intervened variables and a setUk of passively observed
variables. Note that in this representation, a passive observational data set is a ‘null-experiment’ in
which Jk = /0 and Uk = V . Following the standard view (Spirtes et al., 2000; Pearl, 2000), we
consider in this paper randomized “surgical” interventions that break all incoming causal influences
to the intervened variables by setting the intervened variables to values determined by an exogenous
intervention distribution with mean µk

c and covariance cov(c) =Σk
c. In the graph of the underlying

model, this corresponds to cutting all edges into the intervened nodes; see Figure 3 for an example.
To simplify notation, we denote by Jk and Uk two (n×n) diagonal ‘indicator matrices’, where

(Jk)ii = 1 if and only if xi ∈ Jk, all other entries of Jk are zero, and Uk = I− Jk. The vector c
represents the values of the intervened variables determined by the intervention distribution, and
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Figure 3: Manipulated model corresponding to an intervention on variables x1 and x2 in the model
of Figure 2, that is, the result of an experiment Ek = (Jk,Uk) with Jk = {x1,x2} and
Uk = {x3,x4}.

is zero otherwise. The behavior of the model in an experiment Ek is then given by the structural
equations

x := UkBx+Uke+ c. (4)

For an intervened variable x j ∈ Jk, the manipulated model in Equation 4 replaces the original equa-
tion x j := ∑i∈pa( j) b jixi+ e j with the equation x j := c j, while the equations for passively observed
variables xu ∈Uk remain unchanged.

Here the intervention vector c is constant throughout the equilibrating process, holding the inter-
vened variables fixed at the values sampled from the intervention distribution. A different approach
could consider interventions that only “shock” the system initially, and then allow the intervened
variables to fluctuate. This would require a different representation and analysis from the one we
provide here.

As in the passive observational setting discussed in Section 2.1, we have to ensure that the time
series representation of the experimental setting

x(t) := UkBx(t−1)+Uke+ c

is guaranteed to converge to an equilibrium as t → ∞, where both c and e are time-invariant. We do
so by extending the assumption that guarantees convergence in the passive observational setting to
all experimental settings.

Definition 3 (Asymptotic Stability) A linear cyclic model with latent variables (B,Σe) is asymp-
totically stable if and only if for every possible experiment Ek = (Jk,Uk), the eigenvalues λi of the
matrix UkB satisfy ∀i : |λi|< 1.

Asymptotic stability implies that in an experiment Ek = (Jk,Uk) the samples we obtain at equilib-
rium are given by x= (I−UkB)−1(Uke+c). Note that the passive observational case is included in
terms of the null-experiment where Jk is empty. In practice, the assumption of asymptotic stability
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implies that the system under investigation will not break down or explode under any intervention,
so the equilibrium distributions are well defined for all circumstances. Obviously, this will not be
true for many real feedback systems, and in fact the assumption can be weakened for our purposes.
However, as we discuss in more detail in Section 2.3, the assumption of an underlying generating
model that satisfies asymptotic stability simplifies the interpretation of our results. For an acyclic
model (B,Σe) all eigenvalues of all matrices UkB are zero, so the stability condition is in this case
trivially fulfilled.

In general, experiments can take many forms: Apart from varying several rather than just one
variable at the same time, the interventions on the variables can be independent from one another,
or correlated, with different means and variances for each intervened variable. To simplify notation
for the remainder of this paper, we will adopt a standardized notion of an experiment:

Definition 4 (Canonical Experiment) An experiment Ek = (Jk,Uk) is said to be a canonical ex-
periment if the intervened variables in Jk are randomized surgically and uncorrelated with the
disturbances and with each other, with zero mean and unit variance.

This notational simplification makes the partition into intervened and passively observed variables
the only parameter specifying an experiment, and allows us to derive the theory purely in terms of
the covariance matrices Ckx of an experiment. The following lemma shows that we can make the
assumption of uncorrelated components of c without loss of generality. First, however, we need
one additional piece of notation: For any (n×n)-matrix A, we denote by ASrSc the block of A that
remains after deleting the rows corresponding to variables in V \Sr and columns corresponding to
variables in V \Sc, keeping the order of the remaining rows and columns unchanged.

Lemma 5 (Correlated Experiment) If in an experiment Ek = (Jk,Uk), where intervention vari-
ables c are randomized1 independently of the disturbances e such that E(c) = µk

c and cov(c) =Σk
c,

a linear cyclic model with latent variables (B,Σe) produces mean µ̃k
x and covariance matrix C̃kx,

then in a canonical experiment where intervention variables c are randomized independently of e
with E(c) = 0 and cov(c) = Jk, the model produces observations with mean and covariance given
by

µ
k
x = 0, (5)
Ckx = C̃kx− T̃kx(C̃kx)JkJk(T̃kx)T + T̃kx(T̃kx)T , (6)

where T̃kx = (C̃kx)V Jk((C̃
k
x)JkJk)

−1.

Proof To improve readability, proofs for all lemmas and theorems in this paper are deferred to the
appendix.

The lemma shows that whenever in an actual experiment the values given to the intervened
variables are not mutually uncorrelated, we can easily convert the estimated mean and covariance
matrix to a standardized form that would have been found, had the interventions been uncorrelated
with zero mean and unit variance.2 The substantive assumption is that the values of the intervened

1. Randomization implies here that the covariance matrix of the intervention variables cov(cJk ) = (Σk
c)JkJk is symmetric

positive-definite.
2. The lemma should come as no surprise to readers familiar with multiple linear regression: The [•, j]-entries of the
matrix Tkx are the regression coefficients when x j is regressed over the intervened variables. The regressors do not
have to be uncorrelated to obtain unbiased estimates of the coefficients.
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variables (the components of c) are uncorrelated with the disturbances (the components of e). This
excludes so-called ‘conditional interventions’ where the values of the intervened variables depend
on particular observations of other (passively observed) variables in the system. We take this to be
an acceptably weak restriction.

Mirroring the derivation in Section 2.1, in a canonical experiment Ek the mean and covariance
are given by:

µ
k
x = 0, (7)
Ckx = (I−UkB)−1(Jk+UkΣeUk)(I−UkB)−T . (8)

We can now focus on analyzing the covariance matrix obtained from a canonical experiment
Ek = (Jk,Uk) on a canonical model (B,Σe). For notational simplicity we assume without loss
of generality that variables x1, · · · ,x j ∈ Jk are intervened on and variables x j+1, · · · ,xn ∈ Uk are
passively observed. The covariance matrix for this experiment then has the block form

Ckx =

[

I (Tkx)T
Tkx (Ckx)UkUk

]

, (9)

where

Tkx = (I−BUkUk)
−1BUkJk ,

(Ckx)UkUk = (I−BUkUk)
−1(BUkJk(BUkJk)

T +(Σe)UkUk ) (I−BUkUk)
−T .

The upper left hand block is the identity matrix I, since in a canonical experiment the intervened
variables are randomized independently with unit variance. We will consider the more complicated
lower right hand block of covariances between the passively observed variables in Section 3.2. The
lower left hand block Tkx consists of covariances that represent the so-called experimental effects of
the intervened xi ∈ Jk on the passively observed xu ∈Uk. An experimental effect t(xi!xu||Jk) is the
overall causal effect of a variable xi on a variable xu in the experiment Ek = (Jk,Uk); it corresponds
to the coefficient of xi when xu is regressed on the set of intervened variables in this experiment. If
only variable xi is intervened on in the experiment, then the experimental effect t(xi!xu||{xi}) is
standardly called the total effect and denoted simply as t(xi!xu). If all observed variables except
for xu are intervened on, then an experimental effect is called a direct effect: t(xi!xu||V \{xu}) =
b(xi → xu) = (B)ui = bui.

The covariance between two variables can be computed by so called ‘trek-rules’. Some form
of these rules dates back to the method of path analysis in Wright (1934). In our case, these trek-
rules imply that the experimental effect t(xi!xu||Jk) can be expressed as the sum of contributions
by all directed paths starting at xi and ending in xu in the manipulated graph, denoted by the set
P (xi!xu||Jk). The contribution of each path p ∈ P (xi!xu||Jk) is determined by the product of
the coefficients bml associated with the edges xl → xm on the path, as formalized by the following
formula

t(xi!xu||Jk) = ∑
p∈P (xi!xu||Jk)

∏
(xl→xm)∈p

bml ,

where the product is taken over all edges xl → xm on the path p. The full derivation of this formula
is presented in Appendix C (see also Equation 12a in Mason, 1956).
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Figure 4: Left: The original asymptotically stable model. Center: The marginalized model that is
only weakly stable. Right: A marginalized model with self cycles that is asymptotically
stable.

If the model includes cycles, there will be an infinite number of directed paths from one variable
to the other. In the example model of Figure 3, the experimental effects can be calculated using the
trek-rules as follows:

t(x1!x3||{x1,x2}) = (b31+b41b34)(1+b43b34+(b43b34)2+ · · ·) =
b31+b41b34
1−b43b34

, (10)

t(x1!x4||{x1,x2}) = (b41+b31b43)(1+b43b34+(b43b34)2+ · · ·) =
b41+b31b43
1−b43b34

. (11)

The convergence of the geometric series is guaranteed by the assumption of asymptotic stability for
the experiment Jk = {x1,x2}, which ensures that the (only) non-zero eigenvalue λ= b43b34 satisfies
|λ|< 1.

Note that the experimental effects are unaffected by the latent confounding. Since the inter-
ventions break any incoming arrows on the intervened variables, this independence also follows
directly from the graphical d-separation criterion extended to cyclic graphs (Spirtes, 1995): In Fig-
ure 3, variables x1 and x3 are not d-connected by any of the undirected paths through the double
headed arrows.

2.3 Marginalization

One of the key features of linear structural equation models with correlated errors is that the model
family is closed under marginalization. That is, if instead of the original variable setV we only have
access to a subset Ṽ ⊂ V of variables, then if the original model (B,Σe) is in the model family,
then the marginalized model (B̃,Σ̃e) over Ṽ is in the family, too. Any directed paths through
marginalized variables are transformed into directed edges in B̃, and any confounding effect of the
marginalized variables is integrated into the covariance matrix Σ̃e of the disturbances.

For example, in Figure 4 on the left we show the graph structure and the edge coefficients of
an asymptotically stable model (B,Σe) over the variables V = {x1,x2,x3}. For the purpose of ar-
gument, assume that variable x3 is not observed. We thus want to describe a marginalized model
(B̃,Σ̃e) over just the variables Ṽ = {x1,x2}. Critically, the two models should produce the same ob-
servations with respect to the variables x1 and x2 in both the passive observational setting and in any
experiment intervening on {x1}, {x2}, or {x1,x2}. In other words, the marginalized model should be
such that any observations on Ṽ coincides with those obtained from the original model in all exper-
iments that can be performed in both. Thus, in the experiment intervening on x1, the experimental
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effect t(x1!x2||{x1}) = −0.7− 0.8 · 0.8 = −1.34 of the original model should equal the corre-
sponding experimental effect of the marginalized model. If we do not want to add any additional
self-cycles, the only possibility is to set b̃21 =−1.34. Similarly, we set b̃12 = t(x2!x1||{x2}) = 0.9.
This gives the model of Figure 4 (center).

Note, however, that while the original model was asymptotically stable (as can easily be seen by
computing the eigenvalues of B), the marginalized canonical model is not asymptotically stable, as
B̃ has an eigenvalue that is larger than 1 in absolute value. We thus see that when relevant variables
are not included in the analysis, asymptotic stability may not hold under marginalization. Fortu-
nately, it turns out that for our purposes of identification a much weaker assumption is sufficient.
We term this assumption weak stability:

Definition 6 (Weak Stability) A linear cyclic causal model with latent variables (B,Σe) is weakly
stable if and only if for every experiment Ek = (Jk,Uk), the matrix I−UkB is invertible.

Note that the invertibility of matrix I−UkB is equivalent to matrix UkB not having any eigenvalues
equal to exactly 1. (Complex-valued eigenvalues with modulus 1 are allowed as long as the eigen-
value in question is not exactly 1+ 0i.) Any asymptotically stable model is therefore by definition
also weakly stable.

We noted earlier that asymptotic stability is an unnecessarily strong assumption for our context.
In fact, weak stability is all that is mathematically required for all the theory presented in this
article. However, while mathematically expedient, weak stability alone can lead to interpretational
ambiguities: Under the time series interpretation of a cyclic model that we presented in Equation 2,
a weakly stable model that is not asymptotically stable will fail to have an equilibrium distribution
for one or more experiments. While Figure 4 illustrates that asymptotic stability may be lost when
marginalizing hidden variables, one cannot in general know whether a learned model that is not
asymptotically stable for some experiments corresponds to such an unproblematic case, or whether
the underlying system truly is unstable under those experiments.

For the remainder of this article, to ensure a consistent interpretation of any learned model,
we assume that there is a true underlying asymptotically stable data generating model, possibly
including hidden variables—thereby guaranteeing well-defined equilibrium distributions for all ex-
periments. The interpretation of any learned weakly stable model (B,Σe) is then only that the
distribution over the observed variables produced at equilibrium by the true underlying asymptot-
ically stable model has mean and covariance as described by Equations 7 and 8.3 All equations
derived for asymptotically stable models carry over to weakly stable models.4 In the following two
Lemmas, we give the details of how the canonical model over the observed variables is related to
the original linear cyclic model in the case of hidden variables and self-cycles (respectively).

The marginalized model of any given linear structural equation model with latent variables can
be obtained with the help of the following Lemma.

Lemma 7 (Marginalization) Let (B,Σe) be a weakly stable linear cyclic model over the variables
V , with latent variables. LetM ⊂ V denote the set of marginalized variables. Then the marginal-

3. Alternatively, one could avoid making this assumption of asymptotic stability of the underlying model, but in that
case the predictions of the outcomes of experiments must be conditional on the experiments in question resulting in
equilibrium distributions.

4. The sums of divergent geometric series can be evaluated by essentially extending the summing formula∑∞i=0 bi =
1
1−b

to apply also when b> 1 (Hardy, 1949).
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ized model (B̃,Σ̃e) over variables Ṽ = V \M defined by

B̃ = BṼ Ṽ +BṼM (I−BMM )−1BM Ṽ ,

Σ̃e = (I− B̃)
[

(I−B)−1Σe(I−B)−T
]

Ṽ Ṽ (I− B̃)T

is also a weakly stable linear cyclic causal model with latent variables. The marginalized covari-
ance matrix of the original model and the covariance matrix of the marginalized model are equal in
any experiments where any subset of the variables in Ṽ are intervened on.

The expressions for B̃ and Σ̃e have simple intuitive explanations. First, the coefficient matrix B̃
of the marginalized model is given by the existing coefficients between the variables in Ṽ in the
original model plus any paths in the original model from variables in Ṽ through variables in M
and back to variables in Ṽ . Second, the disturbance covariance matrix Σ̃e for the marginalized
model is obtained by taking the observed covariances over the variables in Ṽ and accounting for
the causal effects among the variables in Ṽ , so as to ensure that the resulting covariances in the
marginal model equal those of the original model in any experiment.

In addition to marginalizing unobserved variables, we may be interested in deriving the canon-
ical model (i.e., without self-loops) from an arbitrary linear cyclic model with self-loops. This is
possible with the following lemma.

Lemma 8 (Self Cycles) LetUi be an (n×n)-matrix that is all zero except for the element (Ui)ii= 1.
For a weakly stable model (B,Σe) containing a self-loop for variable xi with coefficient bii, we can
define a model without that self-loop given by

B̃ = B− bii
1−bii

Ui(I−B),

Σ̃e = (I+ bii
1−bii

Ui)Σe(I+
bii

1−bii
Ui)T .

The resulting model (B̃,Σ̃e) is also weakly stable and yields the same observations at equilibrium
in all experiments.

Figure 5 shows explicitly the relation of edge strengths in the two models of the lemma. Since we
are only rescaling some of the coefficients, the graph structure of the model stays intact, except for
the deleted self-loop. The structure of the covariance matrix Σe also remains unchanged, with only
the ith row and the ith column rescaled. For a model (B,Σe) with several self-loops we can apply
Lemma 8 repeatedly to obtain a model without any self-loops, which is equivalent to the original
model in the sense that it yields the same equilibrium data as the original model for all experiments.

Note that, as with marginalization, the standardization by removal of self-cycles may produce a
canonical model that is only weakly stable, and not asymptotically stable, even if the original model
was asymptotically stable.

Ultimately, self-loops affect the speed and path to convergence to the equilibrium, but not the
equilibrium itself. Our approach will not yield any insight on self-loops, because we do not address
the causal process in a time series. However, the indeterminacy regarding self-loops also means that
any predictions at equilibrium are not affected by the learned model being represented in canonical
form, that is, without the possibly existing self-loops. So, although self-loops are not strictly for-
bidden for the data generating model, we can present the theory in the following sections entirely in
terms of models without them.
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Figure 5: Perturbation of coefficients from a model with self-loops (on the left) to a model without
self-loops (on the right). The two models are indistinguishable from equilibrium data.

3. Identifiability

The full characterization of the model under passive observational and experimental circumstances
now allows us to specify conditions (on the set of experiments) that are sufficient (Section 3.1) and
necessary (Section 3.2) to identify the model parameters. Throughout, for purposes of full identi-
fication (uniqueness of the solution) and notational simplicity, we assume that in each experiment
we observe the covariance matrix in the infinite sample limit as described by Equation 8, and that
both the underlying model and all experiments are canonical. For reasons discussed in the previous
section we also assume that there is an underlying generating model that is asymptotically stable,
even though the marginalized parts of the model we observe may only be weakly stable. Readers
who are primarily interested in the learning algorithm we have developed can skip to Section 4 and
return to the identifiability conditions of this section when required.

3.1 Sufficiency

Going back to our four variable example in Figure 3, in which x1 and x2 are subject to interven-
tion, we already derived in Equations 10 and 11 the experimental effects t(x1!x3||{x1,x2}) and
t(x1!x4||{x1,x2}) using the trek-rules. Taken together, these equations imply the following

t(x1!x3||{x1,x2}) = b31+ t(x1!x4||{x1,x2})b34 (12)
= t(x1!x3||{x1,x2,x4})+ t(x1!x4||{x1,x2})t(x4!x3||{x1,x2,x4}).

Note that Equation 12 relates the experimental effects of intervening on {x1,x2} to the experimental
effects of intervening on {x1,x2,x4}. It shows that the experimental effect t(x1!x3||{x1,x2}) can
be calculated by separating the single path not going through x4 (with contribution b31) from the
remaining paths that all go through x4. The last edge on these paths is always x4 → x3. The total
contribution of the paths through x4 is therefore the product t(x1!x4||{x1,x2})b34.

Equation 12 illustrates two separate but related approaches to identifying the full model param-
eters from a set of measured experimental effects: On the one hand, it provides an example of how
experimental effects from one set of experiments can be used to identify experimental effects of a
novel experiment (not in the existing set). Thus, if we had a set of experiments that allowed us to
infer all the experimental effects of all the experiments that intervene on all but one variable, then
we would have determined all the direct effects and would thereby have identified the B-matrix. On
the other hand, Equation 12 shows how the measured experimental effects can be used to construct
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linear constraints on the (unknown) direct effects b ji. Thus, if we had a set of experiments that sup-
plies constraints that would be sufficient for us to solve for all the direct effects, then we would again
be able to identify the B-matrix. In either case, the question crucial for identifiability is: Which sets
of experiments produce experimental effects that are sufficient to identify the model? Unsurpris-
ingly, the answer is the same for both cases. For reasons of simplicity, we present the identifiability
proof in this section in terms of the first approach. We use the second approach, involving a system
of linear constraints, for the learning algorithm in Section 4.

The example in Equation 12 can be generalized in the following way: As stated earlier, for
an asymptotically stable model, the experimental effect t(xi!xu||Jk) of xi ∈ Jk on xu ∈ Uk in ex-
periment Ek = (Jk,Uk) is the sum-product of coefficients on all directed paths from xi to xu. We
can calculate the sum-product in two parts with respect to an observed variable x j ∈Uk. First we
consider all the paths that do not go through x j. The sum-product of all those paths is equal to
the experimental effect t(xi!xu||Jk ∪{x j}), since all paths through x j are intercepted by addition-
ally intervening on x j. Second, the remaining paths are all of the form xi!x̃ j!xu, where x̃ j is the
last occurrence of x j on the path (recall that paths may contain cycles, so there may be multiple
occurrences of x j on the path). The sum-product of coefficients on all subpaths xi!x̃ j is given
by t(xi!x j||Jk) and the sum-product of coefficients on all subpaths x̃ j!xu is t(x j!xu||Jk ∪{x j}).
Taking all combinations of subpaths xi!x̃ j and x̃ j!xu, we obtain the contribution of all the paths
through x j as the product t(xi!x j||Jk)t(x j!xu||Jk∪{x j}). We thus obtain

t(xi!xu||Jk) = t(xi!xu||Jk∪{x j})+ t(xi!x j||Jk)t(x j!xu||Jk∪{x j}). (13)

This equation is derived formally in Appendix F, where it is also shown that it holds for all weakly
stable models (not only asymptotically stable models).

We now show that equations of the above type from two different experiments can be combined
to determine the experimental effects of a novel third experiment. Consider for example the model in
Figure 2 over variables V = {x1,x2,x3,x4}. Say, we have conducted two single-intervention exper-
iments E1 = (J1,U1) = ({x1},{x2,x3,x4}) and E2 = ({x2},{x1,x3,x4}). By making the following
substitutions in Equation 13 for each experiment, respectively,

Jk := J1 = {x1}
xi := x1
x j := x2
xu := x3

Jk := J2 = {x2}
xi := x2
x j := x1
xu := x3

we get two equations relating the experimental effects in the original two experiments to some
experimental effects of the union experiment E3 = ({x1,x2},{x3,x4}) (we denote it as the “union”
experiment because J3 = J1∪ J2):

[

1 t(x1!x2||{x1})
t(x2!x1)||{x2}) 1

][

t(x1!x3||{x1,x2})
t(x2!x3||{x1,x2})

]

=

[

t(x1!x3||{x1})
t(x2!x3||{x2})

]

.

In the above equation, the quantities in the matrix on the left, and the elements of the vector on
the right-hand-side, are experimental effects that are available from the experimental data. The un-
known quantities are in the vector on the left-hand-side. Now, if the matrix on the left is invertible,
we can directly solve for the experimental effects of the third experiment just from the experimen-
tal effects in the first two. (Similar equations hold for other experimental effects as well). The
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following lemma shows that the matrix is invertible when the weak stability condition holds, and
that in general, from experimental effects observed in two experiments, we can always estimate the
experimental effects in their union and in their intersection experiments.

Lemma 9 (Union/Intersection Experiment) For a weakly stable canonical model the experimen-
tal effects in two experiments Ek = (Jk,Uk) and El = (Jl,Ul) determine the experimental effects in

• the union experiment Ek∪l = (Jk∪ Jl, Uk∩ Ul), and

• the intersection experiment Ek∩l = (Jk∩ Jl, Uk∪ Ul).

Since there are no experimental effects in experiments intervening on /0 or V , the experimental
effects are considered to be determined trivially in those cases. In the case of union experiments, also
the full covariance matrix Ck∪lx of the experiment can be determined. For intersection experiments,
Ck∩lx can be fully determined if passive observational data is available (see Appendix J).

In a canonical model the coefficients b(• → xu) on the arcs into variable xu (the direct effects
of the other variables on that variable) are equal to the experimental effects when intervening on
everything except xu, that is, b(• → xu) = t(•!xu||V \ {xu}). So in order to determine particular
direct effects, it is sufficient to ensure that a given set of experiments provides the basis to apply
Lemma 9 repeatedly so as to obtain the experimental effects of the experiments that intervene on
all but one variable. In our example with four variables, we can first use Lemma 9 to calculate the
experimental effects when intervening on {x1}∪ {x2} = {x1,x2} (as suggested above), and given
a further experiment that intervenes only on x4, we can then determine the experimental effects
of an experiment intervening on {x1,x2}∪{x4} = {x1,x2,x4}. The experimental effects we obtain
constitute the direct effects b(• → x3). Hence, if single-intervention experiments are available for
each variable it is easy to see that all direct effects of the model are identified using the lemma.

What then is the general condition on the set of experiments such that we can derive all possible
direct effects by iteratively applying Lemma 9? It turns out that we can determine all direct effects
if the following pair condition is satisfied for all ordered pairs of variables.

Definition 10 (Pair Condition) A set of experiments {Ek}k=1,...,K satisfies the pair condition for
an ordered pair of variables (xi,xu) ∈ V ×V (with xi -= xu) whenever there is an experiment Ek =
(Jk,Uk) in {Ek}k=1,...,K such that xi ∈ Jk (xi is intervened on) and xu ∈Uk (xu is passively observed).

It is not difficult to see that the pair condition holding for all ordered pairs of variables is suffi-
cient to identify B. Consider one variable xu. From a set of experiments satisfying the pair condition
for all ordered pairs, we can find for all xi -= xu an experiment satisfying the pair condition for the
pair (xi,xu). We refer to such an experiment as Ẽi = (J̃i,Ũi) in the following. Now, by iteratively
using Lemma 9, we can determine the experimental effects in the union experiment Ẽ∪ = (J̃∪,Ũ∪)
of experiments {Ẽi}i-=u, where variables in set J̃∪ =

⋃
i-=u J̃i are intervened on. Each xi was inter-

vened on at least in one experiment, thus ∀i -= u : xi ∈ J̃∪. Variable xu was passively observed in
each experiment, thus xu /∈ J̃∪. The experimental effects of this union experiment intervening on
J̃∪ = V \{xu} are thus the direct effects b(• → xu). Repeating the same procedure for each xu ∈ V
allows us to identify all direct effects.
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Thus, if the pair condition is satisfied for all ordered pairs, we can determine all elements of
B, and only the covariance matrix Σe of the disturbances remains to be determined. The passive
observational data covariance matrix C0x can be estimated from a null-experiment E0 = ( /0,V ).
Given B and C0x we can solve for Σe using Equation 3:

Σe = (I−B)C0x(I−B)T . (14)

If there is no null-experiment, then the block (Σe)Uk,Uk of the covariance matrix can instead be
determined from the covariance matrix in any experiment Ek = (Jk,Uk) using Equation 8:

(Σe)UkUk = [(I−UkB)Ckx(I−UkB)T ]UkUk . (15)

Consequently, given B, we can determine (Σe)i j = σi j if the following covariance condition is met.

Definition 11 (Covariance Condition) A set of experiments {Ek}k=1,...,K satisfies the covariance
condition for an unordered pair of variables {xi,x j} ⊆ V whenever there is an experiment Ek =
(Jk,Uk) in (Ek)k=1,...,K such that xi ∈Uk and x j ∈Uk, that is, both variables are passively observed.

Similarly to the pair condition, if we know B, and if the covariance condition is satisfied for all
pairs of variables, we can identify all covariances in Σe. Notice that the variances (Σe)ii can be
determined since the assumption includes that each variable xi must be passively observed at least
in one experiment.

Putting the results together we get a sufficient identifiability condition for a canonical model:

Theorem 12 (Identifiability–Sufficiency) Given canonical experiments {Ek}k=1,...,K a weakly sta-
ble canonical model (B,Σe) over the variablesV is identifiable if the set of experiments satisfies the
pair condition for each ordered pair of variables (xi,x j) ∈V ×V (with xi -= x j) and the covariance
condition for each unordered pair of variables {xi,x j} ⊆ V .

The identifiability condition is satisfied for our four-variable case in Figure 2 by, for exam-
ple, a set of experiments intervening on {x1,x2},{x2,x4},{x1,x4} and {x3}. Obviously, a full set
of single-intervention experiments or a full set of all-but-one experiments together with a passive
observational data set would also do. We return to this issue in Section 4.2.

3.2 Necessity

To show that the conditions of Theorem 12 are not only sufficient but in fact also necessary for
identifiability, we consider what happens when the pair condition or the covariance condition is not
satisfied for some variable pair. Since the covariance condition only ensures the identifiability of
Σe when B is already identified, we start with the more fundamental pair condition.

Consider the two models in Figure 6. The models differ in their parameters, and even in their
structure, yet produce the same observations in all experiments that do not satisfy the pair condition
for the (ordered) pair (x2,x4). That is, for any experiment (including a passive observation), for
which it is not the case that x2 ∈ Jk and x4 ∈Uk, the two models are indistinguishable, despite the
fact that for an experiment that satisfies the pair condition for (x2,x4), the two models will in general
have different experimental effects (due to the difference in the direct effect b42). Since the effect
due to b42 cannot be isolated in the left model without satisfying the pair condition for the pair
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Figure 6: Underdetermination of the model. On the left: the data generating model (B,Σe). On the
right: a model (B̃,Σ̃e) producing the same observations in all experiments not satisfying
the pair condition for the ordered pair (x2,x4).

(x2,x4), its effect can be accounted for elsewhere in the right model, for example, the effect of the
missing path x1 → x2 → x4 is accounted for in the model on the right by the perturbed coefficient
b41+b42b21 on the arc x1 → x4.

The B̃-matrix for the model on the right was constructed from the one on the left by perturbing
the coefficient b42 corresponding to the pair (x2,x4), for which the pair condition is not satisfied.
The perturbation corresponds to setting δ :=−b42 in the following lemma.

Lemma 13 (Perturbation of B) Let B be the coefficient matrix of a weakly stable canonical model
over V and let {Ek}k=1,...,K be a set of experiments on B that does not satisfy the pair condition for
some pair (xi,x j). Denote the sets K =V \{xi,x j} and L = {xi,x j}. Then a model with coefficient
matrix B̃ defined by

B̃KV = BKV , B̃LL =

[

0 bi j
b ji+δ 0

]

, B̃LK = (I− B̃LL)(I−BLL)−1BLK

will produce the same experimental effects as B for any experiment that does not satisfy the pair
condition for the pair (xi,x j). The free parameter δ must be chosen such that B̃ is weakly stable.

Lemma 13 shows that if the pair condition is not satisfied for the pair (xi,x j), then b ji cannot be
identified on the basis of the measured experimental effects. As in our example, it is generally the
case that for δ -= 0 the models B and B̃will produce different experimental effects in any experiment
that satisfies the pair condition for the pair (xi,x j). The choice of δ is not crucial, since most choices
will produce a weakly stable perturbed model.

To see the effect of the perturbation more clearly, we can write it explicitly as follows:

∀l -= j, ∀k : b̃lk = blk, (no changes to any edges that do not end in x j)

b̃ ji = b ji+δ, (perturb the direct effect of xi on x j by δ)

b̃ j j = 0, (no self-loop at x j)

∀k /∈ {i, j} : b̃ jk = b jk−δ
bik+bi jb jk
1−bi jb ji

. (needed adjustments to incoming arcs to x j)

The above form makes it clear that if the pair condition is not satisfied for the pair (xi,x j), in
general all coefficients on the jth row of B may be unidentified as well. Hence, to guarantee the
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identifiability of coefficient b ji we must have the pair condition satisfied for all pairs (•,x j). In
Figure 6 the coefficient b42 is unidentified because the pair condition for the pair (x2,x4) is not
satisfied. But as a result, b41 is also unidentified. Nevertheless, in this particular example, the
coefficient b43 happens to be identified, because of the structure of the graph.

If the pair condition is not satisfied for several pairs, then Lemma 13 can be applied iteratively
for each missing pair to arrive at a model with different coefficients, that produces the same experi-
mental effects as the original for all experiments not satisfying the pairs in question. Each missing
pair adds an additional degree of freedom to the system.

We emphasize that Lemma 13 only ensures that the experimental effects of the original and
perturbed model are the same. However, the following lemma shows that the covariance matrix of
disturbances can always be perturbed such that the two models become completely indistinguishable
for any experiment that does not satisfy the pair condition for some pair (xi,x j), as was the case in
Figure 6.

Lemma 14 (Perturbation of Σe) Let the true model generating the data be (B,Σe). For each
of the experiments {Ek}k=1,...,K, let the obtained data covariance matrix be Ckx. If there exists a
coefficient matrix B̃ -= B such that for all {Ek}k=1,...,K and all xi ∈ Jk and x j ∈Uk it produces the
same experimental effects t(xi!x j ||Jk), then the model (B̃,Σ̃e) with Σ̃e = (I− B̃)(I−B)−1Σe(I−
B)−T (I− B̃)T produces data covariance matrices C̃kx = Ckx for all k = 1, ...,K.

Lemma 14, in combination with Lemma 13, shows that for identifiability the pair condition must
be satisfied for all pairs. If the pair condition is not satisfied for some pair, then an alternative
model (distinct from the true underlying model) can be constructed (using the two lemmas) which
produces the exact same covariance matrices Ckx for all the available experiments. In Figure 6, the
effect of the missing link x2 → x4 is imitated by the additional covariance b42σ22 between e2 and e4
and by the covariance b42σ12 between e1 and e4.

The result implies that identifying the coefficient matrix B exclusively on the basis of constraints
based on experimental effects already fully exploits the information summarized by the second order
statistics. The covariances between the passively observed variables (corresponding to the lower
right hand block in Equation 9) do not provide any further information. We thus obtain the result:

Theorem 15 (Completeness) Given the covariance matrices in a set of experiments {Ek}k=1,...,K
over the variables in V , all coefficients b(xi → x j) of a weakly stable canonical model are identified
if and only if the pair condition is satisfied for all ordered pairs of variables with respect to these
experiments.

Intuitively, the covariances between the passively observed variables do not help in identifying the
coefficients B because they also depend on the unknowns Σe, and the additional unknowns swamp
the gains of the additional covariance measures.

If B is known or the pair condition is satisfied for all pairs, but the covariance condition is
not satisfied for a pair {xi,x j}, then in general the covariance σi j cannot be identified: In all the
manipulated graphs of the experiments the arc xi ↔ x j is cut, and thus σi j does not affect the data in
any way. It follows that the covariance condition is necessary as well. However, unlike for the pair
condition, not satisfying the covariance condition for some pair does not affect the identifiability of
any of the other covariances.

We can now summarize the previous results in the form of a sufficient and necessary identifiabil-
ity condition for the full model. Theorem 12 states that satisfying the pair condition and covariance
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condition for all pairs is sufficient for model identifiability. Theorem 15 shows that the coefficients
cannot be identified if the pair condition is not satisfied for all pairs of variables, and in the previous
paragraph we showed that satisfying the covariance condition for all pairs is necessary to identify
all covariances and variances of the disturbances. This yields the following main result.

Corollary 16 (Model Identifiability) The parameters of a weakly stable canonical model (B,Σe)
over the variables in V can be identified if and only if the set of experiments {Ek}k=1,...,K satisfies
the pair condition for all ordered pairs (xi,x j) ∈ V ×V (such that xi -= x j) and the covariance
condition for all unordered pairs {xi,x j} ⊆ V .

Finally, note that all of our identifiability results and our learning algorithm (Section 4) are solely
based on second-order statistics of the data and the stated model space assumptions. No additional
background knowledge is included. When the data are multivariate Gaussian, these statistics exhaust
the information available, and hence our identifiability conditions are (at least) in this case necessary.

4. Learning Method

In this section, we present an algorithm, termed LLC, for inferring a linear cyclic model with latent
variables, provided finite sample data from a set of experiments over the given variable set. Although
Lemma 9 (Union/Intersection Experiment) naturally suggests a procedure for model discovery given
a set of canonical experiments that satisfy the conditions of Corollary 16 (Model Identifiability), we
will pursue a slightly different route in this section. It allows us to not only identify the model
when possible, but can also provide a more intuitive representation of the (common) situation when
the true model is either over- or underdetermined by the given set of experiments. As before, we
will continue to assume that we are considering a set of canonical experiments on a weakly stable
canonical model (Definitions 2, 4 and 6). From the discussion in Section 2 it should now be clear
that this assumption can be made essentially without loss of generality: Any asymptotically stable
model can be converted into a weakly stable canonical model and any experiment can be redescribed
as a canonical experiment, as long as the interventions in the original experiment were independent
of the disturbances. As presented here, the basic LLC algorithm provides only estimates of the
values of all the edge coefficients in B, as well as estimates of the variances and covariances among
the disturbances in Σe. We later discuss how to obtain error estimates for the parameters and how
to adapt the basic algorithm to different learning tasks such as structure discovery.

4.1 LLC Algorithm

To illustrate the derivation of the algorithm, we again start with Equation 12, which was derived
from the experiment that intervenes on x1 and x2 in Figure 3,

t(x1!x3||{x1,x2}) = b31+ t(x1!x4||{x1,x2})b34.

This provides a linear constraint of the measured experimental effects t(x1!x j||{x1,x2}) on the
unknown direct effects b31 and b34 into x3. In general, the experimental effects observed in an
experiment Ek = (Jk,Uk) can be used to provide linear constraints on the unknown direct effects
that, like Equation 12, have the form

t(xi!xu||Jk) = bui+ ∑
x j∈Uk\{xu}

t(xi!x j||Jk)bu j, (16)
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where xi ∈ Jk and x j,xu ∈ Uk. Analogously to the equations in Section 3.1, for asymptotically
stable models Equation 16 is also naturally interpretable in terms of the sum of paths connecting the
variables: The experimental effect of xi on xu is a sum of the direct effect of xi on xu and the effect of
each path from xi to any other x j ∈U \{xu}, multiplied by the direct connection from that x j to xu.
(Alternatively, one can also see how Equation 16 is reached by iteratively applying Equation 13.)

Since the covariance matrix Ckx of an experiment Ek contains the experimental effects for all
pairs (xi,x j) with xi ∈ Jk and x j ∈Uk, each experiment generates mk = |Jk|× |Uk| constraints of the
form of Equation 16. For a set of experiments {Ek}k=1,...,K we can represent the constraints as a
system of equations linear in the (n2−n) unknown coefficients b ji in B. (Recall that bii = 0 for all
i in canonical models.) We thus have a matrix equation

Tb = t, (17)

where T is a ((∑K
k=1mk)× (n2− n))-matrix of (measured) experimental effects, b is the (n2− n)-

vector of unknown b ji and t is a (∑K
k=1mk)-ary vector corresponding to the (measured) experimental

effects on the left-hand side of Equation 16.
Provided that matrix T has full column rank, we can solve this system of equations for b and

rearrange b into B (including the diagonal of zeros). Since any one constraint (e.g., Equation 16)
only includes unknowns of the type bu•, corresponding to edge-coefficients for edges into some
node xu ∈Uk, we can rearrange the equations such that the system of equations can be presented in
the following form








T11
T22

. . .
Tnn















b1
b2
...
bn








=








t1
t2
...
tn







, (18)

where T is a block diagonal matrix with all entries outside the blocks equal to zero. Instead of
solving the equation system in Equation 17 with (n2 − n) unknowns, Equation 18 allows us to
separate the system into n blocks each constraining direct effects bu• into a different xu. We can
thus separately solve n equation systems Tuubu = tu with (n−1) unknowns in each. The matrix T
has full column rank if and only if all Tuu have full column rank as well.

For example, in the case of the experiment intervening on Jk = {x1,x2} of the 4-variable model
in Figure 3, we obtain the following experimental covariance matrix:

Ckx=







1 0 t(x1!x3||{x1,x2}) t(x1!x4||{x1,x2})
0 1 t(x2!x3||{x1,x2}) t(x2!x4||{x1,x2})

t(x1!x3||{x1,x2}) t(x2!x3||{x1,x2}) vark(x3) covk(x3,x4)
t(x1!x4||{x1,x2}) t(x2!x4||{x1,x2}) covk(x3,x4) vark(x4)






.

This covariance matrix allows us to construct the following four linear constraints on the unknown
b’s:

t(x1!x3||{x1,x2}) = b31+ t(x1!x4||{x1,x2})b34, (19)
t(x1!x4||{x1,x2}) = b41+ t(x1!x3||{x1,x2})b43, (20)
t(x2!x3||{x1,x2}) = b32+ t(x2!x4||{x1,x2})b34, (21)
t(x2!x4||{x1,x2}) = b42+ t(x2!x3||{x1,x2})b43. (22)
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If we have a further experiment El = (Jl,Ul) with Jl = {x4} then we obtain the following three
additional constraints:

t(x4!x1||{x4}) = b14+ t(x4!x2||{x4})b12+ t(x4!x3||{x4})b13, (23)
t(x4!x2||{x4}) = b24+ t(x4!x1||{x4})b21+ t(x4!x3||{x4})b23, (24)
t(x4!x3||{x4}) = b34+ t(x4!x1||{x4})b31+ t(x4!x2||{x4})b32. (25)

Converting the Equations 19-25 to the form of the Equation 18, we see that Equations 19, 21 and 25
become part of T33, while Equations 20 and 22 become part of T44, and the remaining Equations 23
and 24 become part of T11 and T22, respectively. We will focus on T33 consisting of Equations
19, 21 and 25:

T33b3 =





1 0 t(x1!x4||{x1,x2})
0 1 t(x2!x4||{x1,x2})

t(x4!x1||{x4}) t(x4!x2||{x4}) 1









b31
b32
b34





=





t(x1!x3||{x1,x2})
t(x2!x3||{x1,x2})
t(x4!x3||{x4})



= t3.

Given Lemma 9 (Union/Intersection Experiment) it should now be clear that the experimental
effects of experiments Ek and El are sufficient to determine the experimental effects of an exper-
iment intervening on J = V \ {x3}, which would directly specify the values for b31,b32 and b34.
Unsurprisingly, the matrix T33 is invertible and the coefficients b31,b32 and b34 can be solved also
from the above equation system. In Appendix K we show formally that when the pair condition is
satisfied for all ordered pairs, then T has full column rank.

Once we have obtained B using the above method, the covariance matrix Σe can be obtained
easily using Equation 14 if a null-experiment E0 = ( /0,V ) is available, or else using Equation 15 in
the more general case where only the covariance condition is satisfied for all pairs.

Until now, we have described the algorithm in terms of the covariances and the experimental
effects ‘observed’ in a given experiment. In practice, of course, we only have finite sample data,
and the above quantities must be estimated from the data, and the estimated covariances and ex-
perimental effects do not precisely equal their true underlying values. This naturally has practical
ramifications that we describe in the context of the algorithm below.

The LLC algorithm (Algorithm 1), for models that are linear, may have latent variables and
may contain cycles, gathers the ideas described so far in this section. It omits all but the most rudi-
mentary handling of the inevitable sampling variability in the estimates. The algorithm minimizes
the sum of squared errors in the available linear constraints by solving the equation system using the
Moore-Penrose pseudo-inverse. Thus, whenever the linear constraints derived from different exper-
iments are partly conflicting, the algorithm will find a compromise that comes as close as possible
to satisfying all the available constraints. Similarly, to improve the statistical estimation of Σe, we
average over all the instances when a particular pair of variables was passively observed. When the
covariance condition is not satisfied for a particular pair, then the covariance of the disturbances for
that pair remains undefined.

There are several standard modifications that can be made to this basic algorithm in light of
statistical variability of the finite sample data. Whenever the sample size differs substantially be-
tween experiments, a re-weighting of the constraint equations according to the sample size of the
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experiment they were obtained from, favors the more precise constraints. Simple bootstrapping of
the observed samples in each experiment separately, can be used to obtain rough estimates of er-
ror for the identified parameters. In Section 6.2 we calculate a Z-score from these error estimates,
which in turn is used for structure discovery. Finally, some form of regularization can help to avoid
overfitting (see Sections 6.2 and 6.3). Although we have presented the LLC algorithm here in its
stripped down form to illustrate its main contribution, the code implementation5 provides various
options for using these additional features.

When the pair condition is not satisfied for all ordered pairs, then T does not provide a sufficient
set of constraints and the model is underdetermined.6 Nevertheless, some inferences about the
model are still possible. We discuss the details in the following section on underdetermination. For
now, note that the algorithm also outputs a list of pairs that satisfy the pair condition, and a list of
pairs that satisfy the covariance condition. We will show that these can be used to characterize the
underdetermination.

We thus have an algorithm that fully exploits the set of available experiments: When the model
identifiability conditions are satisfied it returns an estimate of the true model, when the system is
overdetermined it finds a compromise to the available constraints, and when the model is underde-
termined we show in the next section what can and cannot be recovered, and how one may proceed
in such circumstances.

4.2 Underdetermination

Even when the set of experiments does not satisfy the pair condition for all ordered pairs of vari-
ables, the LLC algorithm will nevertheless return a model with estimates for all the coefficients. If
there were no sampling errors, one could then check the null-space of the T-matrix to identify which
entries of B are actually underdetermined: An element of B is determined if and only if it is orthog-
onal to the null-space of T. In some cases one may find that specific coefficients are determined
due to particular values of other coefficients even though that was not clear from the satisfied pair
conditions. The coefficient b43 in the example in Figure 6 (see the discussion following Lemma 13)
is a case in point.

In practice, however, using the null-space to identify the remaining underdetermination can be
misleading. The constraints in T are based on estimates and so its null-space may not correctly
identify which coefficients are determined. One can take a more conservative approach and treat
any b jk as undetermined for all k whenever there exists an i such that the pair condition is not
fulfilled for the ordered pair (xi,x j). This follows from the fact that perturbing the model accord-
ing to Lemma 13 (Perturbation of B) with respect to pair (xi,x j), may change all coefficients of
the form b j•, while leaving the observed experimental effects unchanged. Similarly, the fifth step
of the algorithm implements a conservative condition for the identifiability of the covariance ma-
trix: covariance σi j can be treated as determined if the covariance condition is satisfied for the pair
{xi,x j} and the direct effects B{xi,x j},V are determined. Depending on which parameters are iden-
tified, Lemma 9 (Union/Intersection Experiment) can be used to make consistent predictions of the

5. Code implementing the learning algorithm is available at http://www.cs.helsinki.fi/u/ajhyttin/exp/.
6. Because of statistical variability, T may well have full rank even in this case, but some of the dimensions it spans
only represent errors in the estimates rather than information about the coefficients. See Section 4.2 for details.
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Algorithm 1 LLC algorithm
1. Input data from a set of experiments {Ek}k=1,...,K . Initialize matrix T and vector t as empty.

2. Using {Ek}k=1,...,K , determine which ordered pairs of variables satisfy the pair condition and
which pairs of variables satisfy the covariance condition.

3. For each experiment Ek = (Jk,Uk):

(a) Estimate the covariance matrix Ckx.
(b) From the estimated covariance matrix, extract the experimental effects

t(xi!xu||Jk) for all (xi,xu) ∈ Jk×Uk.
(c) For each pair (xi,xu) ∈ Jk×Uk add an equation

bui+ ∑
x j∈Uk\{xu}

t(xi!x j||Jk)bu j = t(xi!xu||Jk)

into the system Tb= t.

4. Solve the equations by b = T†t, where T† is the Moore-Penrose pseudo-inverse of T, and
rearrange b to get B.

5. For any pair {xi,x j} ⊆ V calculate the covariance of the disturbances as a mean of the co-
variances estimated in those experiments Ek = (Jk,Uk) where {xi,x j} ⊆Uk, by

(Σe)i j = mean({((I−UkB)Ckx(I−UkB)T )i j |{xi,x j} ⊆Uk}),

including variances when xi = x j. (The mean is undefined for a particular pair if the covari-
ance condition is not satisfied for that pair.)

6. Output the estimated model (B,Σe), a list of ordered pairs of variables for which the pair
condition is not satisfied, and a list of pairs of variables for which the covariance condition is
not satisfied.

experimental effects or the entire covariance matrix for union- or intersection7 experiments of the
available experiments even if the set of experiments does not satisfy the identifiability conditions.

Instead of characterizing the underdetermination, one may consider how to satisfy the model
identifiability conditions. There are two general approaches one could pursue. One approach is to
strengthen the underlying assumptions, the other to perform additional experiments. Taking the first
approach, the additional assumptions may be domain specific or domain general. In econometrics
it is common to include background knowledge of the domain that excludes the presence of certain
edges, that is, certain edge coefficients are known to be zero. Faithfulness, on the other hand, is an
assumption we did not make, but that is widely used in causal discovery algorithms (Spirtes et al.,
2000). For the linear models we consider here, the assumption of faithfulness requires that a zero-

7. We note that to fully determine the covariance matrix Ck∩lx in an intersection experiment, one may require additional
passive observational data. See the discussion following Lemma 9.
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covariance between two variables entails the absence of a causal connection between the variables.
While reasonable for many circumstances, there are well-known cases where faithfulness is not sat-
isfied. For example, if two or more paths between two variables cancel each other out exactly, then
one would find a zero-covariance between the variables despite the fact that the variables are (multi-
ply!) causally connected. Moreover, if the data is noisy, a close to unfaithful causal relation may not
be distinguishable from an unfaithful one unless a large amount of data or particular experiments are
available. Nevertheless, if faithfulness is judged to be a reasonable assumption, then it can provide
additional constraints. We have discussed the integration of faithfulness and background knowledge
into the current framework in Hyttinen et al. (2010). It remains, however, an open task to develop a
procedure for linear cyclic models with latent variables that is completewith regard to the additional
inferences one can draw on the basis of faithfulness.

If one is able to perform additional experiments, an obvious strategy is to select the next exper-
iment such that it maximizes the number of additional pair conditions that are satisfied. If experi-
ments that intervene on multiple variables simultaneously are taken into consideration, a brute force
search for such a best experiment will be exponential in the number of variables. In that case one
may consider more efficient selection strategies or heuristics. In most cases any additional experi-
ment will also repeat tests for pairs for which the pair condition is already satisfied. When included
in Equation 18, constraints derived from such tests can make the inference more reliable, so one
may deliberately select experiments to include particular repeats.

A selection of experiments that is greedy with respect to the satisfaction of additional pair con-
ditions will not necessarily result in the minimum number of experiments overall. For example, if
one has six variables x1, . . . ,x6, and no pair condition has been satisfied so far, that is, no experiment
has been performed, then a greedy strategy may recommend a sequence of five intervention sets to
fulfill the pair condition for all pairs:

J1 = {x1,x2,x3},J2 = {x4,x5,x6},J3 = {x1,x4},J4 = {x2,x5},J5 = {x3,x6}.

However, the following four intervention sets are sufficient to satisfy the pair condition for all pairs,
but would not be selected by any procedure that is greedy in this respect:

J1 = {x1,x2,x3},J2 = {x3,x4,x5},J3 = {x5,x6,x1},J4 = {x2,x4,x6}.

The optimal selection of experiments (given possible background knowledge) is closely related
to the theory in combinatorics of finding so-called ‘minimal completely separating systems’ for
directed graphs (see Hyttinen et al., 2012 and Spencer, 1970 for some relevant results). A full
discussion here is beyond the scope of this paper.

From a statistical perspective we have found that intervening on more variables simultaneously
leads to a higher accuracy of the estimates even if the total sample size across all experiments is
maintained constant (Eberhardt et al., 2010). That is, for two sets of experiments that each satisfy
the pair condition for all pairs of variables (e.g., the set of four experiments on six variables above
versus a set of six experiments each intervening on a single variable), the sequence of experiments
intervening on multiple variables simultaneously will provide a better estimate of the underlying
model even if the total sample size is the same.

5. Simulations

We compared the performance of the LLC-algorithm against well-known learning algorithms able
to exploit experimental data. Since there is no competing procedure that applies directly to the
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search space including cyclic and latent variable models, we chose for our comparison two proce-
dures that could easily be adapted to the experimental setting and that would provide a good contrast
to illustrate the performance of LLC under different model space assumptions. As baseline we used
the learning procedure by Geiger and Heckerman (1994) for acyclic Bayesian networks with linear
Gaussian conditional probability distributions, referred to as GH. Experimental data is incorporated
into the calculation of the local scores in GH using the technique described by Cooper and Yoo
(1999). Given that GH assumes acyclicity and causal sufficiency (the absence of latent confound-
ing), it provides a useful basis to assess the increased difficulty of the task when these assumptions
are dropped. We also compare to an algorithm for learning Directed Cyclic Graphical models (DCG,
Schmidt and Murphy, 2009), designed for discrete cyclic causal models without latent confounding.
In this model, the passively observed distribution is represented as a globally normalized product of
potentials

P(x1, . . . ,xn) =
1
Z

n

∏
i=1

φ(xi;xpa(i)),

where Z is a global normalizing constant. By using unnormalized potentials instead of normalized
conditional probability distributions, cycles are allowed in the graph structure. Experimental data
is then modeled by simply dropping the potentials corresponding to manipulated variables from the
expression, resulting in a manipulated distribution, such as, for example,

P(x2, . . . ,xn||x1) =
1
Z′

n

∏
i=2

φ(xi;xpa(i)),

with a new normalizing constant Z′. Schmidt and Murphy (2009) use potentials of the form
φ(xi;xpa(i)) = exp(bi(xi)+∑ j∈pa(i)wi j(xi,x j)) to model discrete data and learn the model by max-
imizing the penalized likelihood function using numerical optimization techniques. To fit this ap-
proach we discretized the continuous data (at the very end of the data-generating process) to binary
data using 0 as threshold value. While the DCG model may be useful in analyzing cyclic systems
under intervention, one should note that the underlying causal generative process is not very clear.
Certainly, our data generating processes do not in general yield distributions that fit the model family
of DCG.

At first glance, it would appear natural to consider two further procedures for comparison: the
Cyclic Causal Discovery algorithm (CCD, Richardson, 1996) that allows for cycles but not latent
variables, and the Fast Causal Inference algorithm (FCI, Spirtes et al., 2000) that allows for latents
but not for cycles. Both are based on conditional independence tests and return equivalence classes
of causal models. However, while background knowledge can be integrated into both procedures
to learn from a single experimental data set, it is not clear how (possibly conflicting) results from
different experiments should be combined. Identifying the appropriate combining procedure for
these algorithms would thus require a separate analysis. The approach by Claassen and Heskes
(2010) provides some steps in this direction with regard to FCI, but their framework does not quite
fit our context since in their framework the interventions are not targeted at particular variables. We
considered a comparison with the recent proposal by Itani et al. (2008), but as of this writing no
fully automated procedure was available to the present authors.

To compare the LLC- with the GH- and DCG-algorithms we considered models under five
different conditions:
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1. linear acyclic models without latent variables,
2. linear cyclic models without latent variables,
3. linear acyclic models with latent variables,
4. linear cyclic models with latent variables, and
5. non-linear acyclic models without latent variables.

For each condition we randomly generated 20 causal models with 10 observed variables each. In
the underlying graphs each node had 0-3 parents. In models with latent variables, there were 5
additional latent variables, exogenous to the 10 observed variables. The structural equations were
of the form

x j := ∑
i∈pa( j)

(b jixi+a jix2i )+ e j,

where8 e j ∼ N(0,σ2j), b ji ∼ ±Unif(0.2,0.8) and a ji = 0 except for the fifth condition with non-
linear models where a ji ∼ Unif(−0.2,0.2). For the second and fourth condition we sampled until
we obtained models that contained at least one cycle. From each model we collected samples in the
passive observational setting (null experiment) and in ten additional experiments, each intervening
on a single (but different) variable. The intervened variables were always randomized to a normal
distribution with zero mean and unit variance. The total number of samples (1,000 to 100,000)
were divided evenly among the 11 different experiments, so that adjustments to account for the fact
that one experiment may provide more accurate estimates than another were unnecessary. Note
that the described set of experiments satisfies the identifiability condition for the LLC-method in
Theorem 12 (Identifiability–Sufficiency).

There are a variety of ways to assess the output of the algorithms. Given that every test condition
violates at least one of the assumptions of one of the algorithms being tested, we decided against a
direct comparison of the quantitative output of each procedure. Instead we used the same qualitative
measure that is applied in the cellular network inference challenge that we consider as a case study in
Section 6. Following Stolovitzky et al. (2009), the simulations were designed such that each method
was required to output a list of all possible edges among the observed variables, sorted in decreasing
order of confidence that an edge is in the true graph. To this end, we adapted the three algorithms in
the following way. For LLC, the edges were simply ranked from highest to lowest according to the
absolute value of their learned coefficients in B. Although the magnitude of a coefficient does not
directly represent the confidence in the presence of the edge, we found empirically that it worked
quite well in the simulations. (See Section 6 for an alternative approach based on resampling.)
For GH, we calculated the marginal edge probabilities over all DAG structures (with an in-degree
bound of 3) using the dynamic programming algorithm of Koivisto and Sood (2004), thus obtaining
a score for the confidence in each possible edge. Given that DCG uses binary variables, each edge
is associated with four weights: wi j(0,0), wi j(0,1), wi j(1,0) and wi j(1,1). Since the weights were
penalized (with regularization parameter λ), an edge x j → xi is absent whenever the four associated
weights are zero. Following Schmidt and Murphy (2009), we used the L2-norm of the weights for
each edge to determine its strength and hence its rank. As with LLC, this seemed to work well to
generate the order.

8. Although the disturbances e j are uncorrelated in the data generating model, the disturbances of the learned model are
in fact correlated when some of the original variables are considered unobserved.
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Figure 7: Examples of ROC- (left) and PR-curves (right) of the output of LLC run on 1,000 samples
evenly divided over 11 experiments on a linear acyclic model without latents (condition
1).

Given the ordered lists of all possible edges, we can obtain a binary prediction for the presence or
absence of an individual edge by simply defining a threshold above which edges would be predicted
to be present. These binary predictions can then be compared with the ground truth of the underlying
model. However, since the selection of the threshold is to some extent arbitrary (and requires
domain specific knowledge of the general sparsity of the generating models), we follow the common
approach of reporting Receiver Operating Characteristic (ROC) curves and Precision Recall (PR)
curves, and areas under these curves, as explained below. This evaluation of the simulations is also
consistent with the evaluation of the case study in Section 6.

A ROC-curve (Figure 7, left) is drawn by plotting the true positive rate (TPR) against the false
positive rate (FPR) for different values of the threshold score, where

TPR =
# edges correctly predicted to be present

# edges in generating model
,

FPR =
# edges incorrectly predicted to be present

# edges not in generating model
.

The ROC-curve for a powerful classification method should reach close to the top left corner (perfect
classification) for some threshold value of the score, while classifying at random would result in the
dashed curve in Figure 7. The area under the ROC-curve (AUROC) is often used as a simple one-
figure score to assess the power of a classification algorithm. When discovering causal edges in our
setting, the AUROC-value specifies the probability that a random edge present in the true model
will obtain a higher score than a random absent edge. The AUROC-value usually ranges from 0.5
(random classification) to 1.0 (perfect classification).

3413



HYTTINEN, EBERHARDT AND HOYER

Another measure of the quality of search algorithms examines the trade-off between Precision
and Recall on a PR-curve (Figure 7, right), where

Precision =
# edges correctly predicted to be present

# edges predicted to be present
,

Recall =
# edges correctly predicted to be present

# edges in generating model
.

A perfect classification algorithm should have a precision of 1 for all recall values. The area under
the PR-curve (AUPR) specifies the average precision over different threshold values of the score,
and can range from 0.0 to 1.0 (perfect classification).

Figure 8 shows the results of our simulations. For DCG we ran the algorithm with several
regularization parameter values (λ = 28,27, . . . ,2−7,2−8), and always report the best AUROC- and
AUPR-score. LLC and GH are run without any further tuning. In the first condition (linear acyclic
models without latents), all methods seem to learn the correct causal structure as the sample size
increases. For small sample sizes the GH approach benefits from the use of Bayesian priors. Such
priors could also be added to the LLC-algorithm, if better performance is needed for very low
sample sizes. In the other conditions GH does not achieve good results even with large sample
sizes. The performance of GH actually tends to get worse with increasing sample size because the
method starts adding incorrect edges to account for measured correlations that cannot be fit other-
wise, since the generating model is not included in the restricted model class GH uses. In contrast,
LLC suffers at low sample sizes at least in part because of the larger model class it considers. In
the second (cyclic models without latents), third (acyclic models with latents) and fourth condition
(cyclic models with latent variables), both LLC and DCG find quite good estimates of the causal
structure, when sufficient samples are available. Some inaccuracies of the DCG-method are due
to the discretization of the data. The performance of DCG in the presence of latent confounding
is surprisingly good given that the DCG model does not represent latent variables explicitly. The
result may also suggest that the dependencies among the observed variables that were due to latent
confounding may have been weak compared to the dependencies due to the causal relationships
among the observed variables. For the non-linear data condition, the only discrete (and therefore
non-linear) method DCG achieves the best results.

Without further adjustments GH and DCG cannot be scaled to larger sample sizes or a large
number of variables (n). The super-exponential growth of the number of DAGs currently limits the
GH approach to not more than 30-50 variables. Additionally, the calculation of local scores can
be time consuming. On the other hand, DCG requires a numerical optimization over n+4n(n−1)
parameters, which is also infeasible for large n.

In its most basic form (i.e., Algorithm 1), the LLC algorithm only requires the straightforward
estimation of the covariance matrices and a calculation of a pseudo-inverse for n matrices with a
dimensionality of (n− 1)× (n− 1) each. Such a procedure, as used in our simulations, can thus
scale to a relatively high (e.g., n = 100) number of variables. However, as we see in the next
section, it may be useful to add regularization to the basic procedure, and one may have to resort
to resampling approaches to obtain estimates of the errors in the coefficients, needed to infer which
edges are present and which are absent. Such adaptations and extensions of the basic method can, of
course, add significantly to the complexity of the method, but may also pay off in terms of a higher
accuracy on small sample sizes.
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Figure 8: Simulation results: AUROC (top) and AUPR (bottom) values for the LLC-, GH- and
DCG-algorithms in the five model conditions (columns, see main text for details) for a
total sample size of 1,000-100,000 (x-axis) evenly divided over a passive observation and
10 single intervention experiments. Each point on the solid lines is an average over 20
models with 10 observed variables each, the dashed lines indicate the standard deviation
of this average. The light gray shading in this and subsequent figures is used solely for
visual distinction.

6. Case Study: DREAM Challenge Data

DREAM (Dialogue for Reverse Engineering Assessments and Methods) is a yearly held challenge
for the fair evaluation of strengths and weaknesses of cellular network inference procedures. In this
section, we describe how we applied an adapted version of the LLC-method to the in silico network
challenges of DREAM 3 and DREAM 4, conducted in 2008 and 2009, respectively. The network
sizes of the 25 individual models, divided into 5 sub-challenges, ranged from 10 to 100 nodes.

The participants were asked to learn the directed graph structure of a gene regulatory network
in different types of cells, from experimental data. Data was in silico, or simulated, in order to
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Figure 9: An example of the data provided for one of the 10 variable DREAM network inference
challenge. Each row shows the steady state expression levels for each of the 10 genes
when the gene indicated on the columns is knocked down (•) or knocked out ("). For
each gene, the dashed line indicates the passively observed value. The dark gray shading
highlights the diagonal elements, marking the measured levels when intervening on the
respective gene. From the 10th row we see that the expression level of the 10th gene
responds strongly only to the manipulation of the 9th gene or the 10th gene itself.

have access to the ground truth network structures. The data generating models were designed to be
biologically plausible (Marbach et al., 2009) in order to achieve a realistic performance assessment
of the network learning algorithms. The networks were based on modules extracted from known
biological interaction networks, preserving functional and structural properties of the original net-
works. Data was then generated simulating a biologically plausible dynamical process and adding
noise (Prill et al., 2010).

The data provided to the participants included two measures of the steady states of gene ex-
pression levels (the levels converge to these values over time) as mRNA concentrations, in several
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different conditions. One data set is visualized in Figure 9. Given that only two data vectors were
provided for each condition, GH and DCG, tested in Section 5, are not directly applicable. The
challenges also provided several time series of how the modeled cell recovers from a perturbation
back to its equilibrium state. We do not include the time series data in our analysis, since LLC
(or the other procedures we considered) cannot straightforwardly exploit this data. Each team was
supposed to output a confidence measure or a score for their belief in the existence of each possible
edge in the model. The performance of the learning algorithms was compared using AUROC and
AUPR scores for a single data set (Stolovitzky et al., 2009), in the same manner as explained in
Section 5. Finally, in each sub-challenge of 5 models, the competing teams were compared using a
total score averaging the individual network scores over all 5 networks.

Below, we discuss how we adapted LLC so that we could apply it to these challenges, and
compare the results we obtained with the scores achieved by the teams that participated in the
original challenge.

6.1 Estimating the Total Effects

When gene i is knocked down or knocked out, we can treat the result in our framework as an out-
come of an experiment where variable xi is intervened on. However, the DREAM data provides
only the steady state values of the expression levels, and not the full covariance matrices. We can
still find the total effects in the experiments by the following approach. First, we treat the steady
state values as the expected values of the variables under the different interventions (or passive ob-
servation), rather than as individual samples. Second, the passive observational steady state values
are deducted from all the interventional steady state values such that we can assume E(x) = 0 and
thus E(e) = 0. Recall that the total effect t(xi!x j) is just the regression coefficient of xi when x j
is regressed over the only manipulated variable xi. Thus, the expected or steady state value of x j
when xi is manipulated to a value xi,koi (knocked out) is simply t(xi!x j) · xi,koi . Similar reasoning
applies when xi is manipulated to a value xi,kdi , and so we can estimate t(xi!x j) by the least squares
solution of the equation system:

t(xi!x j) · xi,koi = xi,koj ,

t(xi!x j) · xi,kdi = xi,kdj .

Given that the data set satisfies the pair condition for all ordered pairs, the DREAM experiments
fulfill the requirements given in Section 3 for model identifiability and all total effects t(xi!x j) can
be estimated for all pairs (xi,x j).

6.2 Network Inference

Given the estimated total effects, we could directly apply the LLC algorithm to estimate the direct
effects matrix B. However, we found that to obtain strong results we had to adapt the algorithm in
the following way.

First, unlike in the simulations in Section 5, we found that here the absolute value of a coefficient
b ji does not provide a good confidence measure for the existence of the edge xi → x j, since it does
not consider the possibly large variance of the estimate for b ji in any way. As direct re-sampling
approaches are not possible with the available data, we created K noisy data sets by adding noise
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from a normal distribution with variance σ2 = 0.1 to each raw data point. We then estimated the
total effects as explained above.

Second, to estimate the direct effects B we solved the LLC equation system in Equation 17
using an L1-norm penalization with weight λ= 0.1. An estimate of the direct effects B (vectorized
as b) from the noisy data set is thus calculated by

minb‖Tb− t‖2L2 +λ‖b‖L1 .

As explained in Section 4 the estimation can be done by n separate minimization problems. Note
that the L1-norm penalization can be thought of as a prior for sparse structures, in a way somewhat
similar to the use of a faithfulness assumption.

Finally, we calculate the Z-scores for each link b ji by

Zji =mean({bkji}Kk=1)/std({bkji}Kk=1).

The higher the Z-score the more confident we are of the existence of the edge. Using Z-scores
allows for a high score for a small coefficient as long as its estimated variance is small as well.

Figure 10 summarizes the results. The first observation is that the DREAM 4 challenges were
more competitive than the DREAM 3 challenges as the variation of the results for the 10 best
teams is lower. Our overall ranks in the five challenges are 3rd, 9th, 3rd, 2nd and 10th among
the approximately 30 teams that participated in the actual challenges. There is no clear difference
in evaluation with either score metric. We take these results to be encouraging, especially since—
unlike many other candidates—we did not use the available time series data. How to exploit the time
series data remains an open question. The noise in the data, not having access to a sufficient number
of samples and the possible non-linearity of the causal relations constitute additional sources of
errors.

6.3 Prediction Accuracy

In addition to structure discovery, another important aspect of causal modeling is prediction under
previously unseen experimental conditions. Thus, DREAM 4 featured a bonus round for predicting
the steady state values of the gene expression levels in novel experimental settings. The data were
the same as for the structure discovery challenges. For the five 10-variable models, the teams were
asked to predict all steady state expression levels in 5 situations where always a pair of genes is
knocked out. For the five 100-variable models predictions were requested for 20 double knockout
settings each.

The knocked out values of variables xi and x j are defined by the data as xi,koi and x j,koj . We can
estimate the values of the variables xu such that u -= i, j using the interpretation of the experimental
effects as regression coefficients:

xi, j,kou = t(xi!xu||{xi,x j}) · xi,koi + t(x j!xu||{xi,x j}) · x j,koj .

Since we can estimate t(xi!xk||{xi}) and t(x j!xk||{x j}) as described in the previous section, we
can also estimate the quantities t(xi!xk||{xi,x j}) and t(x j!xk||{xi,x j}) using Lemma 9
(Union/Intersection). We solve the linear equation group (Equation 35 in Appendix G) for the
experimental effects using an L2 prior with regularization parameter λ. In other words, we assume
that the data generating model is a linear cyclic model with latent variables and we predict the steady
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Figure 10: Summary of the results for the DREAM in silico network inference challenges: The
AUROC- and AUPR-scores (first and third row) and the corresponding rank among the
competitors, for each of the DREAM 3 and DREAM 4 challenges. The top of the dark
gray area shows the best results among the competing teams for each individual data
set, while the bottom always shows the 10th best result. Overall there were about 30
competitors in each of the challenges.

state values of the specific combined (double) knockout experiment on the basis of the relevant sin-
gle knockout experimental data provided. (The double knockout effects are identified based on the
single knockout experimental data by Lemma 9.) In this way, in each individual prediction task we
disregard the data that is irrelevant to this specific prediction, and only use the data that is actually
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Figure 11: Predictive performance: Mean squared errors of predictions in double intervention ex-
periments on five 10-variable models (top) and 100-variable models (bottom) plotted
as a function of the regularization parameter. The red line shows the prediction errors
for our procedure. The bottom of the dark gray area shows the best result among the
competing teams for each individual data set, while the top always shows the third best
result.

relevant. In practice, this means that the predictions are more robust to any slight violations of the
modeling assumptions not crucial to the prediction task at hand.

Figure 11 assesses the quality of the predictions. The predictions are compared using the mean
squared error from the ground truth, that is, the average sum of squared errors over the variables and
over the different predictions requested. For the 10-variable models the results of our procedure are
competitive with those of the seven participating teams. For the 100-variable models our procedure
achieves in aggregate the best predictions among the five participating teams for a range of the
regularization parameter values.
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7. Extensions

We have presented and developed the theory in this paper in terms of the standard interpretation
of linear non-recursive structural equation models, in which the vector of disturbances e is held
constant throughout the equilibrating process. Following Lauritzen and Richardson (2002) we refer
to this most common interpretation of cyclic models as the deterministic equilibrium interpreta-
tion, since the value of the observed variables x at equilibrium is a deterministic function of the
disturbances e. In this model, as defined in Section 2.1, different observed vectors x arise solely
from different outside influences e, yielding a covariance matrix Ckx for each experiment Ek. In this
section we discuss some preliminary ideas for extending the theory to other related linear cyclic
models.

In Section 6 we have already seen an application of the method to data in which there is only a
single passive-observational data vector x0 and two experimental data vectors xkdk ,xkok (correspond-
ing to gene knockdown and knockout experiments, respectively) for each experiment intervening
on a single variable at a time. In this case, to make the LLC method applicable, one essentially
must assume that there is a single (constant) disturbance vector e that does not change between the
different experimental conditions, so that the experimental effects are given by the change in values
(from the passive observational to the experimental data) of the non-intervened variables divided
by the corresponding change in value of the intervened variable. Under this assumption, the theory
presented in this paper is directly applicable to estimate the direct effects among the variables from
the experimental effects.

If, however, one wants to apply the full machinery provided in this paper to data of the above
kind, but in which each experiment intervenes on multiple variables simultaneously, it is not suffi-
cient to obtain just one or two experimental data vectors xk. Rather, in general multiple data vectors
may be needed to be able to disentangle the effects of each of the intervened-upon variables on the
non-intervened ones. The details of the required experimental protocols, as well as sufficient and
necessary identifiability conditions, are however left for future work.

A different extension considers models in which the observed data vectors arise from an equi-
librium reached by a process with stochastic dynamics. Specifically, consider a time-series process

x(t) := Bx(t−1)+ e(t),

where e(t) is sampled anew at each time step t, always from the same distribution with mean µe = 0
and variance-covariance matrix Σe. All the variables in x are updated simultaneously given their
values of the previous time step and the new disturbance term e(t).9 Obviously, this system no
longer has a deterministic equilibrium, but for an asymptotically stable model (B,Σe) the process
converges to an equilibrium in which a sample vector x(t = ∞) is drawn from

µx = 0,

Cx = lim
t→∞

t

∑
i=1
Bt−iΣe(BT )t−i.

As in the deterministic model, the observed vector x drawn at equilibrium is independent of the
initial values at the start of the process. Different observed data vectors x would be obtained by run-
ning multiple parallel chains. Interventions could be modeled as setting a given variable to a value

9. We note that this model differs from Lauritzen and Richardson (2002)’s stochastic equilibrium model, discussed in
Sections 6 and 7 of their paper. They consider a sequential update of the variables in a particular order.
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drawn from some distribution, and then keeping that variable constant throughout the equilibrating
process.

In such a model the covariances between the intervened and non-intervened variables corre-
spond to experimental effects, mirroring the deterministic case. Hence the theory presented in this
paper could be used to estimate the direct effects matrix B. Given the direct effects, and given a
passive-observational covariance matrix Cx, one could estimate Σe using the relation

Σe = Cx−BCxBT .

Note, however, that the expression for the covariance among the non-intervened variables is not
directly parallel to the deterministic case, so some of the theory presented in this paper would need
to be adapted if this particular model were of primary interest.

In all the models discussed so far, we have been assuming that interventions take full control
of the intervened variable by making it independent of its normal causes. This representation of an
intervention is consistent with interventions in randomized controlled trials or in cases where a vari-
able is “clamped” to a particular value. However, interventions needn’t be “surgical” in this sense,
but could instead only add an additional influence to the intervened variable without breaking the
relations between the intervened variable and its causal parents. Such interventions are sometimes
referred to as “soft” interventions. In linear models they are formally equivalent to instrumental
variables, which are known to be useful for causal discovery. In our model a soft intervention
is simply represented by an added influence that does not affect the coefficient matrix B, nor the
disturbance term e. That is, the matrix Uk is deleted in both instances from Equation 4, but the
influence c is still added. Assuming that the influence of the soft interventions on the intervened
variables is known, that is, that c is measured, and that multiple simultaneous soft interventions are
performed independently, it can be shown that one can still determine the experimental effects of
the intervened variables. The entire machinery described here thus transfers with only some very
minor adjustments. Given that soft interventions can be combined independently of one another,
very efficient experimental protocols can be developed. In Eberhardt et al. (2010) we found that
even from a statistical perspective, soft interventions appear to require the overall least number of
samples for causal discovery.

Lastly, it is worth noting that the LLC-Algorithm presented here uses the measured experi-
mental effects t(xi!xu||J ) to linearly constrain the unknown direct effects b ji of B. There may
be circumstances in which it might be beneficial to instead use the experimental effects to linearly
constrain the total effects t(xi!xu).10 In fact, such a representation was originally developed in
Eberhardt et al. (2010). Given an experiment Ek = (Jk,Uk), the linear constraint of the measured
experimental effects on the unknown total effects t(xi!xu) is then given by

t(xi!xu) = t(xi!xu||Jk)+ ∑
x j∈Jk\{xi}

t(xi!x j)t(x j!xu||Jk).

The constraint has a similar form to the constraint on direct effects in Equation 16, but combines a
different set of experimental effects. Such a representation of the constraints in terms of total effects
forms the basis for an algorithm analogous to LLC to identify the total effects. Once all the total
effects are determined, one can, if needed, easily infer the direct effects (see Eberhardt et al., 2010).

10. Recall that the total effect corresponds to the experimental effect in the single-intervention experiment where only
the cause is subject to intervention, that is, t(xi!xu) = t(xi!xu||{xi}).
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8. Conclusion

We have described a procedure that uses data from a set of experiments to identify linear causal
models that may contain cycles and latent variables. While assuming linearity is a significant re-
striction, we are not aware of any other procedure that works with assumptions that are as weak in
all other regards. Given this model space, we have shown how important the satisfaction of the pair
condition and the covariance condition is for identifiability. Additionally, we have noted that when
the identifiability conditions are not satisfied, the underdetermination of the model is generally fairly
local.

Despite our analysis in terms of canonical models and sets of canonical experiments, we have
indicated that these are in fact only very weak conditions: Any data from a non-conditional surgi-
cal experiment can be turned into data from a corresponding canonical one (if the experiment was
not canonical to start with), and almost any linear cyclic model with latent variables can be rep-
resented by a canonical model that is completely equivalent with respect to the available data and
any novel predictions produced. Thus, our procedure can handle a quite general model family and
experimental setup.

We have shown that the LLC algorithm performs quite well in comparison with algorithms
designed for solving similar inference problems. Moreover, within the DREAM challenges, we have
a good comparison of how our algorithm (suitably adapted to the problem) performs for realistic
data. It is competitive across all challenges despite the linearity assumption.

In Section 7 we have suggested how our model and search procedure can be generalized to
models with stochastic dynamics; in Eberhardt et al. (2010) we also considered experiments with
so-called “soft” interventions. An open question remains: What are the minimal conditions a model
must satisfy such that a search procedure based on experiments that satisfy the pair condition for all
ordered pairs of variables is sufficient for model identifiability? In Hyttinen et al. (2011) we showed
that this condition is necessary and sufficient for identifiability in discrete acyclic models with a
noisy-or parametrization. It is not known to what extent the condition generalizes to other model
families.
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Appendix A. Centering the Data

Here we show how to center the data, so that it can be modeled with a linear cyclic model with
latent variables that assumes a zero mean for the disturbances. We also consider how to translate
the predictions of the model to predictions for the actual data generating process. Throughout, we
assume that in each experiment we observe the mean and covariance matrix in the infinite sample
limit.

Let the true data generating model be a linear cyclic model with latent variables (B,Σe,µe)
where µe -= 0. Say, we have observed passive observational data with mean µ0x. In an arbitrary
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experiment Ek = (Jk,Uk) the data generating model produces data with the following mean and
covariance matrix:

µ
k
x = (I−UkB)−1(Ukµe+Jkµk

c), (26)
Ckx = (I−UkB)−1(Σk

c+UkΣeUk)(I−UkB)−T .

If we first center all data vectors by

x̄ = x−µ
0
x, (27)

then the centered data has mean µ̄k
x = µk

x−µ0x and unaltered covariance matrix C̄kx = Ckx. The
centering of Equation 27 implies that instead of randomizing the intervened variables in Jk with
mean (µk

c)Jk and covariance (Σk
c)JkJk , the centered variables are considered to be randomized with

mean (µ̄k
c)Jk = (µk

c−µ0x)Jk and covariance (Σ̄k
c)JkJk = (Σk

c)JkJk . The subsequent equations show
that the corresponding model with zero mean disturbance (B̃,Σ̃e, µ̃e), where B̃ = B, Σ̃e =Σe and
µ̃e= 0n, generates the centered data when the intervened variables are randomized with mean (µ̄k

c)Jk
and covariance C̄kx:

C̃kx = (I−UkB̃)−1(Σ̄k
c+UkΣ̃eUk)(I−UkB̃)−T

= (I−UkB)−1(Σk
c+UkΣeUk)(I−UkB)−T = Ckx = C̄kx,

µ̃
k
x = (I−UkB̃)−1(Ukµ̃e+Jkµ̄k

c)

= (I−UkB)−1Jk(µk
c−µ

0
x) ||µ0x = (I−B)−1µe

= (I−UkB)−1Jkµk
c− (I−UkB)−1Jk(I−B)−1µe+(I−B)−1µe−µ

0
x

= (I−UkB)−1Jkµk
c+(I−UkB)−1(−Jk+ I−UkB)(I−B)−1µe−µ

0
x

= (I−UkB)−1Jkµk
c+(I−UkB)−1(−(I−Uk)+ I−UkB)(I−B)−1µe−µ

0
x

= (I−UkB)−1(Ukµe+Jkµk
c)−µ

0
x = µ

k
x−µ

0
x = µ̄

k
x.

Thus, the centering is innocuous with regard to B andΣe. The identities show also how to translate
the predictions of the zero-mean disturbance model in some novel experiment Ek to the predictions
of the actual data generating model: µk

x = µ0x+ µ̃k
x and Ckx = C̃kx.

In the unlikely case that passive observational data is not available, we can simply center the
data vectors x observed in experiment Ek:

x̄ := x−µ
k
x.

This essentially corresponds to just ignoring the observed mean in each experiment. The theory
in the paper can be used to estimate the direct effects matrix B and covariance matrix Σe, as the
data covariance matrices are independent of the mean of the disturbances. This is sufficient for
structure discovery, but if we want to achieve consistent predictions of the observed mean in novel
experimental setups, µe also needs to be estimated. In experiment Ek = (Jk,Uk), the data has mean
µk
x, so (µe)Uk can be estimated by ((I−UkB)µk

x)Uk , since

((I−UkB)µk
x)Uk = ((I−UkB)(I−UkB)−1(Ukµe+Jkµk

c))Uk

= (Ukµe+Jkµk
c)Uk = (µe)Uk .

3424



LEARNING LINEAR CYCLIC CAUSAL MODELS WITH LATENT VARIABLES

Thus, if each variable xi is observed unmanipulated in some experiment and B is identified, then the
whole vector µe can be estimated. The predicted mean µk

x for an arbitrary novel experiment Ek can
then be obtained using Equation 26. See Appendices B and J for additional discussion on predicting
means.

Appendix B. Proof of Lemma 5 (Correlated Experiment)

In a correlated experiment Ek, where c is randomized with mean µk
c and covariance matrixΣk

c such
that (Σk

c)JkJk is symmetric positive-definite, the model (B,Σe) produces the following observations:

µ̃
k
x = (I−UkB)−1µk

c,

C̃kx = (I−UkB)−1(Σk
c+UkΣeUk)(I−UkB)−T

=

[

(Σk
c)JkJk (Σk

c)JkJkBTUkJk
(I−BUkUk)

−T

(I−BUkUk)
−1BUkJk(Σ

k
c)JkJk ∗

]

,

∗ = (I−BUkUk)
−1((Σe)Uk,Uk +BUkJk(Σ

k
c)JkJkBTUkJk)(I−BUkUk)

−T .

Then, matrix T̃kx, defined in the lemma in terms of the observed covariance matrix C̃kx, can be
expressed solely in terms of the model parameters B:

T̃kx = (C̃kx)V Jk((C̃
k
x)JkJk)

−1 =

[

(Σk
c)JkJk

(I−BUkUk)
−1BUkJk(Σ

k
c)JkJk

]
[

(Σk
c)JkJk

]−1

=

[

I
(I−BUkUk)

−1BUkJk

]

= ((I−UkB)−1)V Jk ,

where matrix (C̃kx)JkJk = (Σk
c)JkJk is invertible, since it is a positive-definite matrix. The following

identities apply:

T̃kx(T̃kx)T = ((I−UkB)−1)V Jk(((I−UkB)
−1)V Jk)

T

= (I−UkB)−1Jk(I−UkB)−T ,
T̃kx(C̃kx)JkJk(T̃kx)T = ((I−UkB)−1)V Jk(Σ

k
c)JkJk(((I−UkB)−1)V Jk)

T

= (I−UkB)−1Σk
c(I−UkB)−T .

Now from Equations 5 and 6 we can calculate the statistics of the experiment if the intervened
variables had been randomized with zero mean and unit variance (appearing in Equations 7 and 8):

µ
k
x = 0,
Ckx = C̃kx− T̃kx(C̃kx)JkJk(T̃kx)T + T̃kx(T̃kx)T

= (I−UkB)−1(Σk
c+UkΣeUk−Σ

k
c+Jk)(I−UkB)−T

= (I−UkB)−1(UkΣeUk+Jk)(I−UkB)−T .

Notice that the formulas in the lemma can also be used to transform the predictions 0 and Ckx
in a canonical experiment to predictions µ̃k

x and C̃kx in a non-canonical experiment, where c is
randomized with mean µk

c and covariance Σk
c:

µ̃
k
x = T̃kxµk

c,

C̃kx = Ckx+ T̃kx(Σk
c)JkJk(T̃kx)T − T̃kx(T̃kx)T ,
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where T̃kx = (Ckx)V Jk .

Appendix C. Derivation of the Trek Rule for Asymptotically Stable Models

From the definition of asymptotic stability it follows that the eigenvalues of UkB are all less than
one in absolute value. As the eigenvalues of matrix BUkUk are equal to those of UkB, matrix (I−
BUkUk)

−1 can be written as the following geometric series:

(I−BUkUk)
−1 = I+BUkUk +BUkUkBUkUk + · · · .

Now, the experimental effect t(xi!xu||Jk) can be expressed as the sum-product implied by the trek
rules:

t(xi!xu||Jk) = (Tkx){xu}{xi}
= ((I−BUkUk)

−1BUkJk){xu}{xi}
= ((I+BUkUk +BUkUkBUkUk + · · ·)BUkJk){xu}{xi}

= bui+ ∑
j∈Uk

bu jb ji+ ∑
j∈Uk

∑
l∈Uk

bu jb jlbli+ · · ·

= ∑
p∈P (xi!xu||Jk)

∏
(xl→xm)∈p

bml .

Appendix D. Proof of Lemma 7 (Marginalization)

In the following, note that the experiment of the marginalized model Ẽk = (J̃k,Ũk) and the corre-
sponding experiment of the full modelEk = (Jk,Uk) satisfy Jk = J̃k andUk = Ũk∪M . Without loss
of generality the variables are labeled such that x1, . . . ,xi ∈ J̃k, xi+1, . . . ,x j ∈ Ũk and x j+1, . . . ,xn ∈M
to allow for easy block matrix manipulation.

D.1 Weak Stability

We show that if the full model (B,Σe) is weakly stable then the marginalized model (B̃,Σ̃e) is also
weakly stable. Make the counter-assumption that (B̃,Σ̃e) is weakly unstable, thus there exists an
experiment Ẽk such that (I− ŨkB̃) is singular, or equivalently matrix ŨkB̃ has a unit eigenvalue:
∃ṽ -= 0 such that ŨkB̃ṽ = ṽ. The following shows that then UkB also has a unit eigenvalue corre-
sponding to the eigenvector v defined below:11

11. Invertibility of (I−BMM ) follows from the weak stability of (B,Σe) in experiment (Ṽ ,M ).
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UkBv =

[

Ũk
I

][

BṼ Ṽ BṼM
BM Ṽ BMM

]

v ||v=
[

ṽ
(I−BMM )−1BM Ṽ ṽ

]

=

[

ŨkBṼ Ṽ ŨkBṼM
I ·BM Ṽ I ·BMM

][

ṽ
(I−BMM )−1BM Ṽ ṽ

]

=

[

ŨkBṼ Ṽ ṽ+ ŨkBṼM (I−BMM )−1BM Ṽ ṽ
BM Ṽ ṽ+BMM (I−BMM )−1BM Ṽ ṽ

]

=

[

Ũk(BṼ Ṽ +BṼM (I−BMM )−1BM Ṽ )ṽ
(I−BMM )(I−BMM )−1BM Ṽ ṽ+BMM (I−BMM )−1BM Ṽ ṽ

]

||Def. of B̃

=

[

ŨkB̃ṽ
(I−BMM +BMM )(I−BMM )−1BM Ṽ ṽ

]

=

[

ṽ
(I−BMM )−1BM Ṽ ṽ

]

= v.

Thus, (I−UkB) is singular and the full model (B,Σe) is not weakly stable. Because this is contra-
dictory to the assumptions, (B̃,Σ̃e) must be weakly stable.

D.2 Equal Covariance Matrices

We need to show that in experiment Ek the covariance matrix (Ckx)Ṽ Ṽ produced by (B,Σe) is equal
to the covariance matrix C̃kx produced by (B̃,Σ̃e). This requires us first to derive the following
identities:

(I− B̃ŨkŨk
)−1 = (I−BŨkŨk

−BŨkM (I−BMM )−1BMŨk
)−1, (28)

B̃Ũk J̃k = BŨk J̃k +BŨkM (I−BMM )−1BM J̃k , (29)
(I− B̃ŨkŨk

)−1B̃Ũk J̃k = ((I−BUkUk)
−1BUkJk)Ũk J̃k , (30)

((I− ŨkB̃)−1)Ṽ J̃k
= ((I−UkB)−1)Ṽ J̃k

. (31)

The goal is to derive Equation 31, which means that both models produce the same experimental
effects from xi ∈ J̃k to xu ∈ Ũk.

Equations 28 and 29 follow directly from the marginalized model definition in Lemma 7. To
show Equation 30, we invert the matrix (I−BUkUk) in blocks (the unneeded blocks on rows corre-
sponding to the marginalized variables are replaced with a ‘·’-symbol):

(I−BUkUk)
−1 =

[

I−BŨkŨk
−BŨkM

−BMŨk
I−BMM

]−1

||block matrix inversion & Eq. 28

=

[

(I− B̃ŨkŨk
)−1 (I− B̃ŨkŨk

)−1BŨkM (I−BMM )−1

· ·

]

.
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Then, we can verify Equation 30:

((I−BUkUk)
−1BUkJk)Ũk J̃k

=

([

(I− B̃ŨkŨk
)−1 (I− B̃ŨkŨk

)−1BŨkM (I−BMM )−1

· ·

][

BŨk J̃k
BM J̃k

])

Ũk J̃k

=

[

(I− B̃ŨkŨk
)−1(BŨk J̃k +BŨkM (I−BMM )−1BM J̃k)

·

]

Ũk J̃k

||Eq. 29

=

[

(I− B̃ŨkŨk
)−1B̃Ũk J̃k

·

]

Ũk J̃k

= (I− B̃ŨkŨk
)−1B̃Ũk J̃k .

Equation 31 follows quite directly from Equation 30:

((I−UkB)−1)Ṽ J̃k
= (((I−UkB)−1)V Jk)Ṽ J̃k

=

[

I
(I−BUkUk)

−1BUkJk

]

Ṽ J̃k

=

[

I
((I−BUkUk)

−1BUkJk)Ũk J̃k

]

||Eq. 30

=

[

I
(I− B̃ŨkŨk

)−1B̃Ũk J̃k

]

= ((I− ŨkB̃)−1)Ṽ J̃k
.

Next, we use matrix ṽ = [I j× j 0 j×(n− j)] to avoid the complicated block matrix notation. Mul-
tiplication from the left by ṽ just selects the rows corresponding to variables in Ṽ , multiplication
from the right by ṽT selects the columns corresponding to variables in Ṽ . We prove the following
identities.:

(I− ŨkB̃)−1J̃k = ṽ(I−UkB)−1JkṽT , (32)
(I− ŨkB̃)−1Ũk(I− B̃)ṽ = ṽ(I−UkB)−1Uk(I−B). (33)

Equation 32 just restates Equation 31 using matrix ṽ. Equation 33 is verified by the following
derivation:

(I− ŨkB̃)−1Ũk(I− B̃)ṽ− ṽ(I−UkB)−1Uk(I−B) ||Uk = I−Jk, Ũk = I− J̃k
= (I− ŨkB̃)−1(I− ŨkB̃− J̃k)ṽ− ṽ(I−UkB)−1(I−UkB−Jk)
= ṽ− (I− ŨkB̃)−1J̃kṽ− ṽ+ ṽ(I−UkB)−1Jk ||Eq. 32
= −ṽ(I−UkB)−1JkṽT ṽ+ ṽ(I−UkB)−1Jk ||JkṽT ṽ= Jk
= 0.
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Finally, we can show that the covariance matrix C̃kx of the marginalized model matches the
marginalized covariance matrix (Ckx)Ṽ Ṽ of the original model:

C̃kx = (I− ŨkB̃)−1(J̃k+ ŨkΣ̃eŨk)(I− ŨkB̃)−T ||definition of Σ̃e
= (I− ŨkB̃)−1(J̃k+ Ũk(I− B̃)ṽ(I−B)−1Σe(I−B)−T ṽT (I− B̃)T Ũk)(I− ŨkB̃)−T

= (I− ŨkB̃)−1J̃k(I− ŨkB̃)−T +
(I− ŨkB̃)−1Ũk(I− B̃)ṽ(I−B)−1Σe(I−B)−T ṽT (I− B̃)T Ũk(I− ŨkB̃)−T ||Eq. 33

= (I− ŨkB̃)−1J̃kJ̃k(I− ŨkB̃)−T +
ṽ(I−UkB)−1Uk(I−B)(I−B)−1Σe(I−B)−T (I−B)TUk(I−UkB)−T ṽT ||Eq. 32

= ṽ(I−UkB)−1Jk(I−UkB)−T ṽT + ṽ(I−UkB)−1UkΣeUk(I−UkB)−T ṽT

= ṽ(I−UkB)−1(Jk+UkΣeUk)(I−UkB)−T ṽT = (Ckx)Ṽ Ṽ .

Appendix E. Proof of Lemma 8 (Self Cycles)

Again, we first show weak stability and then confirm that the covariance matrices are equal.

E.1 Weak Stability

First, we show that the model (B̃,Σ̃e) without the self-loop is weakly stable, if the model (B,Σe)
with the self-loop is weakly stable. Notice that the weak stability of (B,Σe) in experiment (V \
{xi},{xi}) implies that bii -= 1. So, assume that (B,Σe) is weakly stable. Make the counter-
assumption that (I−UkB̃) is not invertible in some experiment Ek, then ∃v -= 0 such that UkB̃v= v.
Matrix B can be written as a function of matrix B̃ by inverting the definition of B̃ in the lemma:

B = (I−biiUi)B̃+biiUi.

If xi ∈ Jk we have that UkUi = 0n×n, then

UkB = Uk(I−biiUi)B̃+biiUkUi = UkB̃

and UkBv= UkB̃v= v. Alternatively if xi ∈Uk, we have that UkUi = Ui, then

UkBv = Uk(I−biiUi)B̃v+biiUkUiv ||Multiplication of diagonal matrices commutes
= (I−biiUi)UkB̃v+biiUkUiv
= (I−biiUi)v+biiUiv= v.

In both cases matrix UkB has a unit eigenvalue, and thus I−UkB is singular. This is contradictory
to the assumption that the model (B,Σe) is weakly stable, and so the model (B̃,Σ̃e)must be weakly
stable.

E.2 Equal Covariance Matrices

Then we show that in an arbitrary experiment Ek the two models produce data with the same co-
variance matrices. First, if variable xi ∈ Jk, then UkUi = 0n×n, UkB= UkB̃ (as shown above) and

UkΣ̃eUk = Uk(I+
bii

1−bii
Ui)Σe(I+

bii
1−bii

Ui)TUk = UkΣeUk.
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The covariance matrices are trivially equal:

C̃kx = (I−UkB̃)−1(Jk+UkΣ̃eUk)(I−UkB̃)−T

= (I−UkB)−1(Jk+UkΣeUk)(I−UkB)−T = Ckx.

Alternatively, if variable xi ∈Uk, then UkUi = Ui, and because

(I−UkB̃)(I−UkB)−1 = (I−UkB+
bii

1−bii
UkUi(I−B))(I−UkB)−1

= I+ bii
1−bii

Ui(I−UkB−JkB)(I−UkB)−1 ||UiJk = 0n×n

= I+ bii
1−bii

Ui,

the covariance matrices are also equal:

C̃kx = (I−UkB̃)−1(Jk+UkΣ̃eUk)(I−UkB̃)−T ||definition of Σ̃e

= (I−UkB̃)−1(Jk+Uk(I+
bii

1−bii
Ui)Σe(I+

bii
1−bii

Ui)TUk)(I−UkB̃)−T

= (I−UkB̃)−1((I+
bii

1−bii
Ui)Jk(I+

bii
1−bii

Ui)T ||Multip. of diag. mat. commutes

+Uk(I+
bii

1−bii
Ui)Σe(I+

bii
1−bii

Ui)TUk)(I−UkB̃)−T

= (I−UkB̃)−1(I+
bii

1−bii
Ui)(Jk+UkΣeUk)(I+

bii
1−bii

Ui)T (I−UkB̃)−T ||id. above

= (I−UkB̃)−1(I−UkB̃)(I−UkB)−1(Jk+UkΣeUk)
·(I−UkB)−T (I−UkB̃)T (I−UkB̃)−T

= (I−UkB)−1(Jk+UkΣeUk)(I−UkB)−T = Ckx.

Appendix F. Derivation of Equation 13

Lemma 7 (Marginalization) showed that weak stability and experimental effects from an intervened
variable xi ∈ Jk to an observed variable xu ∈ Uk are preserved (as part of the covariance matrix)
when some variables inUk are marginalized. Then, it is sufficient to show that Equation 13 applies
in a weakly stable model where variables Uk \ {x j,xu} are marginalized. Lemma 8 (Self cycles)
allows us to assume without loss of generality that there are no self-loops in this model.

Examine experiment Ek = (Jk,Uk) where Uk = {x j,xu} in the marginalized model (B,Σe).
The experimental effects in the experiment intervening on Jk ∪ {x j} are just the direct effects
t(xi!xu||Jk ∪ {x j}) = bui and t(x j!xu||Jk ∪ {x j}) = bu j. The remaining experimental effects
t(xi!xu||Jk) and t(xi!x j||Jk) appear in the matrix ((I−UkB)−1)UkJk :

((I−UkB)−1)UkJk = (I−BUkUk)
−1BUkJk =

[

1 −b ju
−bu j 1

]−1[
· · · b ji · · ·
· · · bui · · ·

]

=
1

1−bu jb ju

[

1 b ju
bu j 1

][

· · · b ji · · ·
· · · bui · · ·

]

=

[

· · ·
b ji+b jubui
1−bu jb ju · · ·

· · ·
bui+bu jb ji
1−bu jb ju · · ·

]

.
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Now Equation 13 can be verified:

t(xi!xu||Jk∪{x j})+ t(xi!x j||Jk)t(x j!xu||Jk∪{x j}) = bui+
b ji+b jubui
1−bu jb ju

bu j

=
bui−bu jb jubui+bu jb ji+bu jb jubui

1−bu jb ju
=
bui+bu jb ji
1−bu jb ju

= t(xi!xu||Jk).

Appendix G. Proof of Lemma 9 (Union/Intersection Experiment)

In this proof, we first derive a linear equation system on the unknown experimental effects and then
show that it has a unique solution under weak stability.

G.1 Generalizations of Equation 13

Equation 13 can be generalized to relate some experimental effects in Ek = (Jk,Uk) to some exper-
imental effects in Ek∪l = (Jk∪ Jl,Uk∩Ul) by applying Equation 13 iteratively:

t(xi!xu||Jk) = t(xi!xu||Jk∪ Jl)+ ∑
x j∈Jl\Jk

t(xi!x j||Jk)t(x j!xu||Jk∪ Jl). (34)

Here xi ∈ Jk, xu ∈ Uk ∩Ul . Another way of writing the generalization relates some experimental
effects in Ek = (Jk,Uk) to experimental effects in Ek∩l = (Jk∩ Jl,Uk∪Ul):

t(xi!xu||Jk∩ Jl) = t(xi!xu||Jk)+ ∑
x j∈Jk\Jl

t(xi!x j||Jk∩ Jl)t(x j!xu||Jk).

Here xi ∈ Jk∩ Jl , xu ∈Uk.

G.2 Equations for the Experimental Effects in the Union Experiment

First, partition V into the following disjoint sets: I = Jk ∩ Jl (intervened in both experiments),
K = Jk \ Jl (intervened only in Ek), L = Jl \ Jk (intervened only in El) and O =Uk∩Ul (passively
observed in both experiments). For each pair (xk,xu) with xk ∈ K and xu ∈ O we can form an
equation of the form of Equation 34 using experimental effects from experiment Ek:

t(xk!xu||Jk∪ Jl)+ ∑
x j∈L

t(xk!x j||Jk)t(x j!xu||Jk∪ Jl) = t(xk!xu||Jk).

Equations for all such pairs can be represented neatly by block matrices:

(Tk∪lx )OK +(Tk∪lx )OL(Tkx)LK = (Tkx)OK .

Similarly, equations can be formed for all pairs (xk,xu) with xk ∈ L and xu ∈ O using experimental
effects from experiment El . For pairs (xk,xu) with xk ∈ I and xu ∈ O, equations could be formed
using the experimental effects from either experiments, but it turns out that only equations using the
experimental effects of experiment Ek are needed. The equations form the following system:

[

(Tk∪lx )OI (Tk∪lx )OK (Tk∪lx )OL
]





I|I |
I|K | (Tlx)KL

(Tkx)LI (Tkx)LK I|L |





︸ ︷︷ ︸

Q

=
[

(Tkx)OI (Tkx)OK (Tlx)OL
]

. (35)
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G.3 Invertibility

Now, we know the matrix on the right and matrix Q, and we would like to solve for the matrix on
the left by multiplying from the right by Q−1. Thus, we need to show that Q is invertible. Since
the variables in O do not appear in matrix Q in any way, consider a marginalized model (B̃,Σ̃e)
over Ṽ =V \O, where variables O are marginalized. The marginalized experiments corresponding
to experiments Ek and El are Ẽk = (I ∪K ,L) and Ẽl = (I ∪L ,K ) respectively. If (B,Σe) is
weakly stable as we assume, also (B̃,Σ̃e) is weakly stable by Lemma 7 (Marginalization). All the
experimental effects in Q are preserved in the marginalization. The blocks can be now expressed
using Equation 9:

(Tkx)LI = (T̃kx)LI = ((I− B̃LL)−1B̃L ,I∪K )LI = (I− B̃LL)−1B̃LI ,
(Tkx)LK = (T̃kx)LK = ((I− B̃LL)−1B̃L ,I∪K )LK = (I− B̃LL)−1B̃LK ,

(Tlx)KL = (T̃lx)KL = ((I− B̃KK )−1B̃K ,I∪L)KL = (I− B̃KK )−1B̃KL .

The matrices inverted in the expressions are invertible, because the marginalized model is weakly
stable. Now Q can be written as a product of 3 simple square matrices:

Q=





I|I |
I|K | (I− B̃KK )−1B̃KL

(I− B̃LL)−1B̃LI (I− B̃LL)−1B̃LK I|L |



=





I|I |
−(I− B̃KK )−1

(I− B̃LL)−1










I|I |
I− B̃KK −B̃KL

B̃LI −B̃LK I− B̃LL










I|I |
−I|K |

I|L |



 .

The matrices on the left and on the right are invertible as block diagonal matrices with invertible
blocks. Consider the middle matrix in the blocks indicated by the lines. Because the upper right-
hand block is just zeros, the matrix is invertible if the two diagonal blocks are invertible. The
lower right-hand block is invertible since the marginalized model is weakly stable in the experiment
(I ,K ∪L). As a product of 3 invertible matrices matrix Q is invertible. Note that the factorization
is valid also in the case where I = /0.

G.4 Matrix Equations for the Experimental Effects

The derivation of the equations and proof of invertibility for the intersection experiment proceeds
very similarly. Here the formulas for solving the experimental effects in the union and intersection
experiment are presented for completeness:

[

(Tk∪lx )OI (Tk∪lx )OK (Tk∪lx )OL
]

=
[

(Tkx)OI (Tkx)OK (Tlx)OL
]





I
I (Tlx)KL

(Tkx)LI (Tkx)LK I





−1

,





(Tk∩lx )K I

(Tk∩lx )LI
(Tk∩lx )OI



 =





I −(Tlx)KL

−(Tkx)LK I
−(Tkx)OK I





−1



(Tlx)K I

(Tkx)LI
(Tkx)OI



 .

See Appendix J on how to determine the full covariance matrices in the union and intersection
experiments.
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Appendix H. Proof of Lemma 13 (Perturbation of B)

Experiments Ek = (Jk,Uk) with xi ∈ Jk, x j ∈Uk do not have to be considered as the pair condition
is not satisfied for the pair (xi,x j). Consider then experiments Ek = (Jk,Uk) with x j ∈ Jk. As
explained in the text after Lemma 13, B and B̃ differ only on the j:th row. Then, if x j ∈ Jk, we have
that UkB̃= UkB and the experimental effects must be equal.

That leaves us with experiments Ek = (Jk,Uk) with xi ∈ Uk and x j ∈ Uk. In the special case
of experiment Ek′ = (K ,L) = (V \ {xi,x j},{xi,x j}), the experimental effects are the same by the
definition of the alternative coefficient matrix B̃:

T̃k′x = (I− B̃LL)−1B̃LK = (I− B̃LL)−1(I− B̃LL)(I−BLL)−1BLK = (I−BLL)−1BLK = Tk′x .

Otherwise the intervention set Jk has a presentation Jk = K ∩ (Jk ∪L). We just noted that the
experimental effects are the same in experiment (K ,L). Earlier we showed that experimental effects
are equal when x j is intervened on, this holds in particular for experiment (Jk ∪L ,Uk \L). By
Lemma 9 (Union/Intersection Experiment) the effects of an intersection experiment Ek are defined
by the experimental effects of the two original experiments, so the experimental effects must be
equal in experiment Ek.

Appendix I. Proof of Lemma 14 (Perturbation of Σe)

Take any experiment Ek = (Jk,Uk). The two models (B,Σe) and (B̃,Σ̃e) produce the same experi-
mental effects. Then, we can prove the following identities:

Uk(I−UkB̃)−1Jk = Uk(I−UkB)−1Jk, (36)
(I−UkB̃)−1Jk = (I−UkB)−1Jk, (37)

(I−UkB̃)−1Jk(I−UkB̃)−T = (I−UkB)−1Jk(I−UkB)−T , (38)
(I−UkB̃)−1Uk(I− B̃) = (I−UkB)−1Uk(I−B). (39)

Equation 36 follows directly from the fact that the experimental effects of the two models are the
same in experiment Ek. Equation 37 is proven by the following:

(I−UkB̃)−1Jk ||Uk+Jk = I
= Uk(I−UkB̃)−1Jk+Jk(I−UkB̃)−1Jk ||Jk(I−UkB̃) = Jk
= Uk(I−UkB̃)−1Jk+Jk(I−UkB̃)(I−UkB̃)−1Jk
= Uk(I−UkB̃)−1Jk+Jk ||Eq. 36
= Uk(I−UkB)−1Jk+Jk = (I−UkB)−1Jk.

Equation 38 follows from Equation 37:

(I−UkB̃)−1Jk(I−UkB̃)−T ||JkJk = Jk,Jk = JTk
= (I−UkB̃)−1JkJTk (I−UkB̃)−T

= (I−UkB̃)−1Jk((I−UkB̃)−1Jk)T ||Eq. 37
= (I−UkB)−1Jk((I−UkB)−1Jk)T

= (I−UkB)−1Jk(I−UkB)−T .
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Equation 39 is proven by the following:

(I−UkB̃)−1Uk(I− B̃) = (I−UkB̃)−1(I−UkB̃−Jk)
= I− (I−UkB̃)−1Jk ||Eq. 37
= I− (I−UkB)−1Jk = (I−UkB)−1Uk(I−B).

Finally, the covariance matrices produced by the two models can be shown to be equal:

C̃kx = (I−UkB̃)−1(Jk+UkΣ̃eUk)(I−UkB̃)−T ||Definition of Σ̃e
= (I−UkB̃)−1Jk(I−UkB̃)−T + ||Eq. 38 and 39

(I−UkB̃)−1Uk(I− B̃)(I−B)−1Σe(I−B)−T (I− B̃)TUk(I−UkB̃)−T

= (I−UkB)−1Jk(I−UkB)−T +
(I−UkB)−1Uk(I−B)(I−B)−1Σe(I−B)−T (I−B)TUk(I−UkB)−T

= (I−UkB)−1(Jk+UkΣeUk)(I−UkB)−T = Ckx.

Appendix J. Covariance Matrices of Union and Intersection Experiments

Even if the set of experiments does not allow for the identification of the full model, consistent pre-
dictions are still possible in some unseen experimental settings assuming the data generating model
is a linear cyclic model with latent variables. Lemma 9 already showed that the experimental effects
can be predicted in the union and intersection experiments of any two already conducted experi-
ments. In the following we extend this result to the prediction of the entire covariance matrices.

Let the data generating model be (B,Σe). Say we have conducted experiment Ek observing
covariance matrix Ckx and experiment El observing covariance matrix Clx. By solving Equation 17
using the pseudoinverse we can find a matrix B̃ that produces the same experimental effects in the
two experiments. Now define

M̃1 := (I−Uk∪lB̃)−1Jk∪l(I−Uk∪lB̃)−T ,
M̃2 := (I−Uk∪lB̃)−1Uk∪l(I− B̃).

using the estimate B̃. Now, we can show that matrix M̃1+ M̃2CkxM̃T
2 is equal to the covariance

matrix Ck∪lx that the true data generating model would produce in experiment Ek∪l = (Jk∪l,Uk∪l) =
(Jk∪ Jl,Uk∩Ul):

M̃1+M̃2CkxM̃T
2

= (I−Uk∪lB̃)−1Jk∪l(I−Uk∪lB̃)−T ||Eq. 38 and 39
+(I−Uk∪lB̃)−1Uk∪l(I− B̃)Ckx(I− B̃)TUk∪l(I−Uk∪lB̃)−T

= (I−Uk∪lB)−1Jk∪l(I−Uk∪lB)−T ||Eq. 8
+(I−Uk∪lB)−1Uk∪l(I−B)Ckx(I−B)TUk∪l(I−Uk∪lB)−T

= (I−Uk∪lB)−1Jk∪l(I−Uk∪lB)−T +(I−Uk∪lB)−1Uk∪l(I−B)(I−UkB)−1

·(Jk+UkΣeUk)(I−UkB)−T (I−B)TUk∪l(I−Uk∪lB)−T ||Uk∪l = UlUkUk
= (I−Uk∪lB)−1Jk∪l(I−Uk∪lB)−T +(I−Uk∪lB)−1UlUkUk(I−B)(I−UkB)−1

·(Jk+UkΣeUk)(I−UkB)−T (I−B)TUkUkUl(I−Uk∪lB)−T ||Uk = I−Jk
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= (I−Uk∪lB)−1Jk∪l(I−Uk∪lB)−T +(I−Uk∪lB)−1UlUk((I−UkB)−Jk)(I−UkB)−1

·(Jk+UkΣeUk)(I−UkB)−T ((I−UkB)−Jk)TUkUl(I−Uk∪lB)−T ||UkJk = 0n×n
= (I−Uk∪lB)−1Jk∪l(I−Uk∪lB)−T

+(I−Uk∪lB)−1UlUk(Jk+UkΣeUk)UkUl(I−Uk∪lB)−T ||UlUkUk = Uk∪l
= (I−Uk∪lB)−1(Jk∪l+Uk∪lΣeUk∪l)(I−Uk∪lB)−T = Ck∪lx .

To predict the whole covariance matrix in the intersection experiment, we need the passive
observational data covariance matrix C0x in addition to the observations in experiments Ek and El .
Now, define matrices

M̃3 := (I−Uk∩lB̃)−1Jk∩l(I−Uk∩lB̃)−T ,
M̃4 := (I−Uk∩lB̃)−1Uk∩l(I− B̃).

Then, we can show that M̃3+ M̃4C0xM̃T
4 is equal to the covariance matrix Ck∩lx that the data gener-

ating model would produce in experiment Ek∩l = (Jk∩l,Uk∩l) = (Jk∩ Jl,Uk∪Ul):

M̃3+M̃4C0xM̃T
4

= (I−Uk∩lB̃)−1Jk∩l(I−Uk∩lB̃)−T ||Eq. 38 and 39
+(I−Uk∩lB̃)−1Uk∩l(I− B̃)C0x(I− B̃)TUk∩l(I−Uk∩lB̃)−T

= (I−Uk∩lB)−1Jk∩l(I−Uk∩lB)−T ||Eq. 3
+(I−Uk∩lB)−1Uk∩l(I−B)C0x(I−B)TUk∩l(I−Uk∩lB)−T

= (I−Uk∩lB)−1Jk∩l(I−Uk∩lB)−T

+(I−Uk∩lB)−1Uk∩l(I−B)(I−B)−1Σe(I−B)−T (I−B)TUk∩l(I−Uk∩lB)−T

= (I−Uk∩lB)−1(Jk∩l+Uk∩lΣeUk∩l)(I−Uk∩lB)−T = Ck∩lx .

The above formulas for the prediction of covariance matrices can be used iteratively to find
consistent estimates for the covariance matrices in different experiments, as long as the interven-
tion set of the experiment can be reached by taking successive unions and intersections from the
intervention sets of the actually conducted experiments.12

Appendix K. LLC Algorithm

We show here that matrix T of the LLC learning method is full column rank if the pair condition is
satisfied for all pairs. This implies that the coefficients or direct effects are fully identified.

First we show that the equations of the type of Equation 16 obtained in the union experiment
Ek∪l are merely linear combinations of equations obtained in experiment Ek and El . This is a
rather direct consequence of Lemma 9 and its proof in Appendix G. In an arbitrary experiment Ek,
equations for all pairs (xi,xu) with xi ∈ Jk and xu ∈Uk, can be represented neatly in matrix notation:

B{xu}Jk +B{xu}(Uk\{xu})(T
k
x)(Uk\{xu})Jk = (Tkx){xu}Jk ⇔

(B{xu}Jk)
T +((Tkx)(Uk\{xu})Jk)

T (B{xu}(Uk\{xu}))
T = ((Tkx){xu}Jk)

T .

12. Note that if µe -= 0, M̃2µ
k
x and M̃4µ

0
x provide estimates for the observed means in the union and intersection exper-

iments.
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Now, partition V similarly as in Appendix G. Consider an arbitrary xu ∈ O (observed in both
experiments). Define Õ = O \ {xu}. Equations corresponding to pairs (xi,xu) with xi ∈ I ∪K
obtained in experiment Ek and equations corresponding to pairs (x j,xu) with x j ∈ L obtained in
experiment El can be collected into a single system constraining coefficients bu•:





I ((Tkx)LI )T ((Tkx)ÕI )T
I ((Tkx)LK )T ((Tkx)ÕK )T

((Tlx)KL)T I ((Tlx)ÕL)T











(B{xu}I )
T

(B{xu}K )T

(B{xu}L)
T

(B{xu}Õ)
T







=





((Tkx){xu}I )T
((Tkx){xu}K )T

((Tlx){xu}L)T



 . (40)

Notice, that the left-hand block of the matrix on the left is just the transpose of the Q matrix in-
troduced in Appendix G. As Q was shown to be invertible under the assumption that the data
generating model is weakly stable, we can multiply the equation group by Q−T from the left. As
blocks of Equation 35 in Appendix G we get the following identities:

Q−T





((Tkx){xu}I )T
((Tkx){xu}K )T

((Tlx){xu}L)T



 =





((Tk∪lx ){xu}I )
T

((Tk∪lx ){xu}K )T

((Tk∪lx ){xu}L)
T



 ,

Q−T





((Tkx)ÕI )T
((Tkx)ÕK )T

((Tlx)ÕL)T



 =





((Tk∪lx )ÕI )
T

((Tk∪lx )ÕK )T

((Tk∪lx )ÕL)
T



 .

Thus, multiplying the Equation 40 from the left by Q−T produces the following equation system:





I ((Tk∪lx )ÕI )
T

I ((Tk∪lx )ÕK )T

I ((Tk∪lx )ÕL)
T











(B{xu}I )
T

(B{xu}K )T

(B{xu}L)
T

(B{xu}Õ)
T







=





((Tk∪lx ){xu}I )
T

((Tk∪lx ){xu}K )T

((Tk∪lx ){xu}L)
T





⇔






(B{xu}I )
T +((Tk∪lx )ÕI )

T (B{xu}Õ)
T

(B{xu}K )T +((Tk∪lx )ÕK )T (B{xu}Õ)
T

(B{xu}L)
T +((Tk∪lx )ÕL)

T (B{xu}Õ)
T




 =





((Tk∪lx ){xu}I )
T

((Tk∪lx ){xu}K )T

((Tk∪lx ){xu}L)
T



 .

For the union experiment Ek∪l = (Jk∪l,Uk∪l) we have that I ∪K ∪L = Jk∪l and Õ =Uk∪l \{xu}.
The equation system can be written in in the following simple form:

(B{xu}Jk∪l )
T +((Tk∪lx )(Uk∪l\{xu})Jk∪l )

T (B{xu}(Uk∪l\{xu}))
T = ((Tk∪lx ){xu}Jk∪l )

T .

These are all of the equations from experiment Ek∪l constraining coefficients bu•. As we considered
arbitrary xu ∈ O, the same procedure can be repeated for each xu ∈ O. This exhausts all equations
obtained in the union experiment. All of the equations obtained in experiment Ek∪l are thus linear
combinations of some of the equations obtained in the original two experiments Ek and El .

Finally, matrix T can be verified to have full column rank as follows. MatrixT being full column
rank is equivalent to system Tb= t having at most a unique solution. The original equation system
Tb= t consists of all the equations (like Equation 16) gathered in experiments {Ek}k=1,...,K . We can
always add equations that would be obtained in the union experiment Ek∪l of two experiments Ek
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and El whose equations are already in the system, without further restricting the possible solutions
of the system. This is because the added equations are merely linear combinations of some of the
equations already in the system. If the pair condition is satisfied for all pairs, by adding always
equations from the union experiments of two experiments, whose equations are already in the sys-
tem, we are eventually able to add equations for experiments intervening on sets V \ {xu}, for all
variables xu ∈ V (this follows the rationale discussed after Definition 10). These equations specify
the direct effects b directly and uniquely. Since the solution space was not restricted throughout the
procedure of adding new equations, we can deduce that the original system had at most a unique
solution, which implies that the original matrix T has full column rank.
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