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Abstract

We consider the problems arising from us-
ing sequences of experiments to discover the
causal structure among a set of variables,
none of whom are known ahead of time to
be an “outcome”. In particular, we present
various approaches to resolve conflicts in the
experimental results arising from sampling
variability in the experiments. We provide
a sufficient condition that allows for pooling
of data from experiments with different joint
distributions over the variables. Satisfaction
of the condition allows for more powerful in-
dependence tests that may resolve some of
the conflicts in the experimental results. The
pooling condition has its own problems, but
should – due to its generality – be informative
to techniques for meta-analysis.

1. Introduction

Knowledge of causal structure enables predictions in
cases where the system under consideration has been
subject to interventions. Discovery of causal structure
can proceed in two ways: Inference to causal structure
– as far as is possible – from the passive observation of
the variables, or active search of causal structure using
interventions that specify a particular distribution for
a subset of the variables.

There is a vast literature on causal discovery using
passive observational data. Two main approaches can
be distinguished: On the one hand there are a vari-
ety of Bayesian approaches which start with a prior
over causal structures. The likelihood of the (passive
observational) data given each causal structure is com-
puted and multiplied with the prior over structures to
form a posterior. The most likely graph is then taken
to be the one with the highest posterior probability.
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For large numbers of variables there is an enormous
number of possible graphs, so generally some compu-
tational short cuts are necessary. These can be in
the form of (i) tricks that avoid computing the pos-
terior for the entire set of possible graphs (Chickering,
2002), (ii) assuming structural constraints (maximum
degree of nodes or other sparsity assumptions), or
(iii) applying hierarchical Bayes methods (Mansinghka
et al., 2006). On the other hand are constraint based
methods that search for causal structure by sequen-
tially testing for independence relations that hold in
the data and using the results to constrain the search
space (Spirtes et al., 2000). There are convergence
results that guarantee the consistency of these algo-
rithms, i.e. that guarantee that the algorithms recover
as much information about the causal structure as is
possible when the conditional independence relations
true in the population are known. Similar asymptotic
results are only known about the GES Algorithm for
the Bayesian approach (Chickering, 2002).

Both of these approaches are limited to discovering
an equivalence class of causal graphs, known as the
Markov equivalence class, in which each graph implies
the same (conditional) independence constraints for
the data. In order to uniquely determine the causal
structure, interventions are required. An intervention,
in our parlance, is a randomization of one variable,
which means that the values of the variable are de-
termined by a distribution exogenous to any variable
in the system. The advantage of interventions, first
recognized by Fisher (1935), is that (i) interventions
break any confounding due to (unmeasured) common
causes, (ii) interventions can determine causal direc-
tion (if A causes B and the intervention is on A, then
A and B will appear correlated, whereas if the inter-
vention is on B, A and B will appear independent),
and (iii) interventions provide a reference distribution
over the intervened variable that allows for further sta-
tistical analysis (e.g. the estimation of strength pa-
rameters of the causal influence).

We assume general familiarity with the framework of
causal Bayes nets (Pearl, 2000; Spirtes et al., 2000).



Sufficient Condition for Pooling Data

Causal Bayes nets are directed acyclic graphs that
represent the conditional independence relations im-
plied by a causal structure. The causal Markov and
faithfulness assumption link the graph with probabil-
ity distributions over the variables. The causal Markov
assumption states that every variable is conditionally
independent of its non-descendents given its graphical
parents, and faithfulness is the assumption that the
graph represents all the conditional independence re-
lations true in the population. In the following discus-
sion we assume in addition to acyclicity, faithfulness
and causal Markov, that the set of variables is causally
sufficient, i.e. that there are no latent variables.

Interventions on variables in a Bayes net G = (V,E)
are represented by policy variables. Although the no-
tion of policy variables can be generalized, we will here
assume that there is a policy variable IX for each vari-
able X ∈ V. Each policy variable has a single ar-
row into the variable whose intervention it specifies
(IX → X) and is exogenous to the variables under
consideration, i.e. is – for all intents and purposes here
– uncaused. A policy variable has two states, 0 and 1.
If IX = 0, the passive observational distribution over
X obtains, and X is dependent on its normal causes,
its graphical parents pa(X), i.e. P (X|pa(X), IX =
0) = P (X|pa(X)). If IX = 1, then X is subject to an
intervention. In that case the distribution over X is
determined entirely by IX . This is often referred to as
a “hard” or “surgical” intervention, since the interven-
tion breaks the dependency of X on its normal causes,
i.e. P (X|pa(X), IX = 1) = P (X|IX = 1).

This form of “edge-breaking” intervention captures the
notions of randomized trials as well as clamping (fixing
a variable to a particular value), which is a degenerate
form of a “surgical” intervention.1 The policy variable
represents the decision of whether or not a particu-
lar variable is subject to an intervention. Its non-zero
state is associated with a particular distribution over
the intervened variable. For the most part a policy
variable behaves like any other variable, although we
do not specify a distribution over the values of a pol-
icy variable. We refer to the subset of variables in V

subject to an intervention in a given experiment (i.e.
whose policy variable IX = 1) as I and the correspond-
ing set of policy variables as Pol.

Even when using interventions of the type described
above, there are causal graphs for which a single ex-
periment involving a single intervention on one vari-

1Note, that the notion of an intervention can be gen-
eralized to weaker interventions which do not break the
influence of the other causes of X, or IX might have many
states which specify different distributions over X.

able or multiple simultaneous interventions on a set of
variables is insufficient to recover the complete causal
structure among the variables. Sequences of experi-
ments involving a combination of different interven-
tions are needed. Eberhardt et al. (2006) show that
N − 1 experiments are sufficient and in the worst case
necessary to recover the causal structure among a set
of N variables if only a single variable can be subject
to an intervention in any one experiment. This bound
can be reduced to ⌊log

2
(N)+1⌋ if multiple simultane-

ous interventions are allowed (Eberhardt et al., 2005).

Only the combination of results from the N − 1 or
⌊log

2
(N) + 1⌋ different experiments allows the unique

identification of the underlying causal structure. Con-
sider an example with two variables X,Y : While inde-
pendence of X and Y is identifiable by passive obser-
vational data, dependence underdetermines the causal
structure, since it might be X → Y or X ← Y (assum-
ing causal sufficiency). However, an intervention on X

would disambiguate the evidence, since we would find
X and Y to be associated in case of the first structure,
whereas we would fail to do so for the second, since
the intervention destroys the correlation between X

and Y . Similarly, for an intervention on Y . However,
the combination of passive observational evidence with
evidence from an experiment in which one of the pair
of variables was subject to an intervention uniquely
identifies the causal structure for that pair of vari-
ables. We refer to this as a combination of a struc-
tural adjacency test (since passive observation tests
for adjacencies) and a structural direction test (since
the intervention determines causal direction). Simi-
larly, the combination of evidence from an experiment
in which X was subject to an intervention and Y was
passively observed, with evidence from a further exper-
iment in which Y was subject to an intervention and
X was passively observed, will uniquely determine the
causal structure among X and Y . If X and Y are non-
adjacent, both experiments will show independence, if
X → Y , we will only find independence in the exper-
iment that intervenes on Y , and if X ← Y , then only
the intervention on X will return independence. We
refer to this set-up as a combination of two opposing
structural direction tests.

More formally, let < E >n be a sequence of experi-
ments on a set of variables V. Each experiment Ei

consists of a set of variables Ii ⊆ V that are subject
to an intervention, and a set of variables Ui ⊆ V that
are passively observed. Ui ∪ Ii = V and Ui ∩ Ii = ∅.
Any experiment Ei is a structural adjacency test with
respect to a pair of variables X,Y if both X and Y

are passively observed, i.e. X,Y ∈ Ui. Ei is a struc-

tural X-direction test, if X ∈ Ii and Y ∈ Ui; Ei is a
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structural Y -direction test, if Y ∈ Ii and X ∈ Ui.

As indicated above and discussed in more detail in
Eberhardt et al. (2005), if we restrict our search al-
gorithm to qualitative features of the data (indepen-
dence relations), then we need either one structural
adjacency test and one structural direction test, or two
opposing structural direction tests to uniquely deter-
mine the causal structure among a pair of variables.

The bounds shown in Eberhardt et al. (2005) are im-
plied by combinatorial constraints that result if one
wants to subject each pair of variables to either one of
these combination of structural tests. The bounds do
not take into account the statistical issues that errors
might occur due to statistical fluctuations.

2. The Problem

In any realistic experimental setting, conditional inde-
pendence tests will be subject to errors. In search for
the causal structure among a set of variables the ab-
sence of a particular causal arrow between X and Y is
determined by the existence of some conditioning set
that makes the two variables independent. However,
the presence of an edge implies that the two variables
in question remain dependent for all possible condi-
tioning sets. In fact, not all possible conditioning sets
need to be tested if the graph is sparse, but there does
remain an asymmetry in the test requirements for the
two possibilities. In large dense networks the search
may require a very large number of conditioning sets
to determine adjacency. Consequently, the likelihood
of all independence tests returning the correct result
descreases as the number of tests increases. This is ex-
aggerated by the fact that the available number of data
points for a particular independence test gets smaller
as the conditioning sets increase. Thus, we can expect
to obtain conflicting results from different experiments
about a particular pair of variables, since some exper-
iments might return the pair as adjacent, while others
do not. Of course, if X → Y is in the true graph,
we expect X and Y to be independent in an experi-
ment where Y is subject to an intervention, whereas
we expect dependence for all conditioning sets if the
intervention is on X. The combination of these exper-
imental results does not amount to a conflict, since the
results are coherent with one true generating structure.
We have a conflict if the results from different experi-
ments are inconsistent with any causal structure that
– appropriately manipulated given the interventions of
the specific experiment – is assumed to generate the
data in both cases.

The simplest such conflict occurs if we have two exper-

iments E1 and E2 on the same set of variables V. We
assume that the same (pre-manipulation) causal struc-
ture underlies both experiments and that we would –
if the experiments involved no interventions – observe
the same joint distributions over the set of variables.
Let X,Y ∈ V both be passively observed in both ex-
periments, i.e. both experiments are structural adja-
cency tests with respect to this pair of variables. Sup-
pose X and Y are independent for some conditioning
set C in E1, indicating that neither variable is a direct
cause of the other. Further assume that X and Y are
dependent for all conditioning sets in E2, suggesting
that either X → Y or X ← Y . We must conclude that
at least one of the independence tests must have re-
turned an erroneous result, because their implications
are not consistent. E1 says there is no edge, while E2

says there is one. If we assume we assume that the
same underlying causal structure generated the data
in both cases, then the results are inconsistent..

Since the bounds described in Eberhardt et al. (2005)
optimize the combinatorics of structural direction and
adjacency tests, conflicts can arise from a variety of
situations: First, it is possible that a pair of variables
is subject to the same structural test repeatedly in a
sequence of experiments. With statistical errors, the
results for the same test might not be consistent across
experiments. Second, conflicts may arise because re-
sults from different structural tests cannot be com-
bined coherently.

Let X and Y refer to some pair of variables in V and
let Ei refer to some experiment in the sequence of ex-
periments, different indices indicate different experi-
ments. Conflicts are given in the following situations:

1. X and Y are passively observed in Ek and El,
but Ek indicates they are non-adjacent, whereas
El indicates they are adjacent.

2. X is randomized in Ek and found to be adjacent
to Y (in fact it would be a direct cause of Y ), but
in El both variables are passively observed and
found to be non-adjacent.

3. X is randomized in Ek and found to be a direct
cause of Y and Y is randomized in El and found
to be a direct cause of X (a conflict, since we
assume acyclicity).

4. X and Y are passively observed in Ek and found
to be adjacent, but X is randomized in El and not
found to be adjacent to Y and Y is randomized
in Em and not found to be adjacent to X.

Given these types of conflicts, under what circum-
stances is it possible to resolve them? Of course one
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could re-run one of the experiments, possibly with a
larger sample size, pool the data from the original and
the repeated experiment and perform the crucial inde-
pendence tests again, now with a greater power. But
additional experiments may be expensive to perform.

In order to recover the causal structure uniquely, we
have to perform a sequence of experiments anyway. Is
it possible to utilize information gained in the other
experiments to resolve our conflicts?

The concern is that we cannot simply pool the data
relevant to a particular independence test from two ex-
periments, because different experiments in a sequence
have different joint distributions over the variables due
to the different interventions. If different variables are
subject to interventions, this implies different manip-
ulated graphs over the variables, representing the dif-
ferent joint distributions. Pooling data from different
distributions may lead to spurious changes in correla-
tions.

Consider the following examples.

2.0.1. Example 1: Independence to

Dependence

Suppose we have the following linear structural equa-
tion model with gaussian error terms.

W

��

Z

��
ǫX // X Y ǫYoo

W ∼ N(0, 2.25)

Z ∼ N(0, 5.29)

ǫX ∼ N(0, 3.24)

ǫY ∼ N(0, 6.25)

X = 2W + ǫX

Y = 3Z + ǫY

Under passive observation of X and Y we obtain the
data shown in Figure 1. X and Y are found to be in-
dependent with high significance on any standard in-
dependence test – as we would expect from the causal
structure.

Now consider the same causal structure, but where si-
multaneous and independent interventions impose dis-
tributions on W and Z that are different to their
passive observational distribution, i.e. the following

causal structure:

IW
// W

��

Z

��

IZ
oo

ǫX // X Y ǫYoo

Wi|IW = 1 ∼ N(3, 1)

Zi|IZ = 1 ∼ N(−2, 1)

ǫX ∼ N(0, 3.24)

ǫY ∼ N(0, 6.25)

X = 2W + ǫX

Y = 3Z + ǫY

In this case we obtain the data over X and Y shown
in Figure 2. Again, as expected from the causal struc-
ture, X and Y are independent and the result is sig-
nificant.

However, when we pool the two distributions, X and
Y are no longer independent, as can be seen in Figure
3. The gradient of the regression of X on Y is −0.5
with a p-value smaller than 0.001.

This is a very simple case where two samples in which
X and Y are independent in each sample (as they
should be in accordance with the causal structure), be-
come dependent when the samples are pooled. The in-
terventions were not even on the variables themselves.
Of course, this particular case is not problematic, since
in the case of causal discovery we know the separate
samples before and could normalize the data from each
sample before pooling and then we would find X and
Y to be independent. But normalizing is only pos-
sible when the distribution over the variables in the
intervened case is of the same type as in the passive
observational case. If the intervention distributions on
W and Z had been, say, χ2 distributions, then such
normalizing and pooling would not be possible, simi-
larly, if the interventions had been a restriction in the
range of values that W and Z could take.

2.0.2. Example 2: Dependence to

Independence

In the second example we consider a case where depen-
dence in one experiment might be washed out to ren-
der the two variables independent, when pooled with
a separate sample.

Suppose the true causal structure corresponds to the
following linear structural equation model with gaus-
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sian error terms:

W

��

Z

��

ǫZoo

ǫX // X

>>}}}}}}}}
Y ǫYoo

W ∼ N(0, 1.9)

ǫX ∼ N(0, 0.49)

ǫZ ∼ N(0, 4.84)

ǫY ∼ N(0, 1.21)

X = 2W + ǫX

Z = 0.1X + ǫZ

Y = 3Z + ǫY

A plot of 1,000 samples of X and Y are shown in Fig-
ure 4. The main point to note is that X and Y are
found to be dependent with high significance. If we
now perform an experiment in which we intervene to
set the distribution on Z, then we break the arrow
from X to Z and have the following causal structure:

IZ

��
W

��

Z

��

ǫZoo

ǫX // X Y ǫYoo

W ∼ N(0, 1.9)

ǫX ∼ N(0, 0.49)

ǫZ ∼ N(0, 4.84)

ǫY ∼ N(0, 1.21)

X = 2W + ǫX

Zi|IZ = 1 = ǫZ

Y = 3Zi + ǫY

A plot of 1,000 samples of X and Y from the manipu-
lated distribution are shown in Figure 5. As expected,
X and Y are independent.

However, if we pool the data from the two experiments
(Figure 6), then we find that X and Y are indepen-
dent. It is not clear what the normative solution is
in this case since we are mixing distributions, one
where X and Y are dependent and one where they
are independent. But what we find is that pooling
the samples removed the dependence in the first sam-
ple. This example can be made more extreme with a
graph where there are to causal connections between

X and Y which are both strong, but almost cancel
each other out2. If there are two experiments, each of
which blocks one of the paths, then the pooled result
might return independence (since the total effect is too
weak to register in the total sample size), even though
there is a strong correlation in each subsample.

The two examples illustrate that pooling samples from
different distributions can lead to spurious changes in
the correlation between two variables, and the change
can be in either direction. In light of these examples,
how can we resolve any conflicts?

3. Solutions

3.1. Voting

The first solution that comes to mind to resolve con-
flicts without re-doing one of the experiments is some
type of voting procedure. Given a sequence of experi-
ments one could select those experiments that are in-
formative about a particular pair of variables X and Y ,
i.e. those experiments that do not simultaneously in-
tervene on both X and Y . Among these experiments a
simple vote decides whether X → Y , X ← Y or X and
Y are non-adjacent. However, it is not that simple:
Although there are three possibilities of what might
be going on between a pair of variables, the structural
tests are only binary. A structural direction test can
decide whether there is an edge from the intervened
variable to the other variable, but cannot distinguish
between an edge incedent on the intervened variable
and no edge at all. Similarly, a structural adjacency
test can tell wether there is an edge at all, but is unable
to distinguish directions. It seems therefore, that the
vote of a particular test should be evenly split between
the options it cannot distinguish. That is, if after an
intervention on X we find X and Y to be independent,
then both non-adjacency and X ← Y should receive
half a vote each.

But even now, the approach does not take into account
that votes from different experiments are votes from
different joint distributions, which may make the dis-
covery of a particular (in)dependence harder or easier.
In order to reflect the importance of the result from
any particular experiment, the votes could be weighted
by the p-values of the independence tests they repre-
sent. But now we run into trouble with the asym-
metry of the search procedure: In order to discover
non-adjacency we have to find one conditioning set
that makes the two variables independent. The PC-

2As long as the two causal connections do not exactly
cancel each other out, this would not amount to a violation
of faithfulness.
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algorithm iterates through the independence tests in
order of complexity (size of the conditioning set), so
that there always is a well-defined independence test
that determines non-adjacency. The p-value from this
test could be used to determine the weight of the vote
from this particular experiment. However, adjacency

is established if there is no conditioning set that makes
the variables independent, i.e. all the independence
tests fail. Consequently there is no unique p-value that
could be used to weight the vote. There is no guaran-
tee that there is a corresponding independence test in
each experiment so that we could reduce the conflict
to a set of independence tests. And even if there were,
then we are aggregating votes weighted by p-values
from different distributions. It is not clear what the
justification for such a procedure may be, since differ-
ent distributions may yield p-values that distort the
vote.

Quite apart from the above matters, issues of judg-
ment aggregation arise. Since the combination of in-
dependence relations imply other (in particular, higher
order) independence relations the outcome of a voting
procedure might depend on how votes are aggregated
and it is not clear at all, how an aggregation proce-
dure here would have to be designed to be in some
sense “truth tracking”, i.e. that we could have any
hope that using some voting method will get us closer
to the true graph.

The bottom line is that voting may well work as a
useful heuristic to resolve conflicts, but the worry is
that the ad hoc decisions made in order to have a
well-defined voting procedure destroy the consistency
guarantees of the overall search algorithm.

3.2. Bayesian Approach

For a Bayesian, conflicts of the type described above
do not arise. A strictly Bayesian approach would place
a prior over all possible structures and all possible pa-
rameterizations of those structures. Given the set of
variables subject to an intervention in the first exper-
iment, one would compute all the post manipulation
graphs for all the structures and compute the likeli-
hood of the data obtained from the experiment given
each manipulated graph. The likelihood is then mul-
tiplied with the prior, where the prior probability for
each manipulated structure for this experiment is spec-
ified by the prior of the corresponding unmanipulated
structure. The variables specifying the parameteriza-
tions are integrated out to yield a posterior distribu-
tion over all possible (manipulated) structures. This
posterior can then be used as a prior over all possi-
ble unmanipulated structures for the next experiment.

Conflicts do not arise explicitly but are taken care of
implicitly in the likelihood and updating procedure.

This Bayesian approach – if fully implemented – would
preserve the consistency results of the search algo-
rithm. However, the computation cost is enormous:
Even for six variables, there are between 215 and 315

possible structures (three possibilities for each edge,
but excluding all cyclic structures). So, even if the in-
tegrals were simple to compute, there would be a huge
number of them for large graphs. It is insufficient to
keep track of only the most likely graph, since there are
cases where only particular combinations of interven-
tions render the true graph the most likely. Until these
have been performed, it not clear why the true graph
would be the most likely graph. In addition, in general
the prior over the structures will not be simple, since
it will be the posterior of the previous experiment(s),
for which there is no reason to think that it will be
simple.

Computational limitations will restrict the feasibility
of this approach to toy problems. Alternatively, a va-
riety of assumptions have to be added to simplify the
calculations (e.g. particle filtering, hierarchical meth-
ods etc.). But at least it is a solution.

4. A sufficient Condition for a Solution

The key difficulty is to account for the differences of
the joint distributions due to the different interven-
tions, and to figure out how and when these differ-
ences affect the independence tests relevant to a con-
flict. Failure to take these differenes into account can
lead to spurious correlations or independencies when
data is pooled. However, if we can ensure that the
distribution relevant to the conditional independence
test in question is the same in both experiments, then
the data can be pooled to obtain an independence test
with more power.

For example, suppose the variables, say X and Y ,
whose independence is in question, are graphically dis-
connected, i.e. causally separate, from the other vari-
ables W1, . . . ,Wn in the causal structure. If there are
two experiments, one which is an intervention on Wi

and another with an intervention on Wj , then clearly
the changes in the interventions will have no effect on
the marginal distribution over X and Y and the data
from the experiment can be pooled for the indepen-
dence tests on X and Y . This is a very strong con-
dition to ensure the validity of pooling, but we show
that it can be weakened.

In the following we provide a sufficient condition whose
satisfaction allows for pooling of data from different
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joint distributions.

Let < E >n= E1, E2 . . . En be a sequence of exper-
iments on the set of variables V. Each experiment
is represented by a triple of sets Ei = (Ii,Ui,Poli),
where Ii represents the subset of V that is subject to
an intervention in Ei, Poli is the corresponding set of
policy variables, and Ui contains the remaining pas-
sively observed variables.

Suppose that the pair of variables X,Y ∈ V is subject
to a conflict: There is some experiment Ei which ren-
ders X and Y adjacent, whereas some experiment Ej

renders X and Y non-adjacenct. Hence, there is some
conditioning set C such that X and Y are indepen-
dent conditional on C in Ej . Let this independence
test be TX,Y |C. Let Mi,j ⊆ V be the set of variables
that is subject to an intervention in Ei, but not in Ej ,
i.e. Mi,j = Ii \ Ij, and let PolMi,j

be the set of pol-
icy variables corresponding to Mi,j. Similarly for Mj,i

and PolMj,i
.

In addition, there may be some variables Z ∈ V that
are subject to an intervention in both experiments, but
the distribution imposed on Z by the interventions is
different in each case, i.e policy variable IZi

6= IZj
. Let

PolNi,Nj
contain all the policy variables from Ei corre-

sponding to such variables Z. Similarly for PolNj,Ni
.

Let Si = PolMi,j
∪ PolNi,Nj

. Similarly for Sj. Si

and Sj contain all the policy variables that change be-
tween the two experiments Ei and Ej . The basic idea
is that we only have to worry about those interven-
tions that change across experiments, since they are
the only changes that differentiate the joint distribu-
tions. These changing interventons are contained in Si

and Sj.

If we could ensure that the distribution relevant to a
particular independence test is invariant to the differ-
ences in the joint distributions in the two experiments,
then we could pool the data and obtain more power-
ful independence tests. These would be more powerful
tests of the adjacency relations between variables and
could be used to resolve conflicts. The following theo-
rem specifies a sufficient condition for this invariance.

Theorem 4.1 If the set of variables {X,Y } is d-

separated from the set of changing policy variables Si

given the conditioning set C in experiment Ei and if

the set of variables {X,Y } is d-separated from the set

of changing policy variables Sj given the conditioning

set C in experiment Ej, then the distributions relevant

for independence test TX,Y |C are invariant across ex-

periments Ei and Ej and the data relevant to the test

can be pooled.

Proof: Let Pi(V) be the distribution over variables V

in experiment Ei, while P (V) is the passive observa-
tional distribution. If {X,Y } is d-separated from the
changing policy variables Si given C, the joint distri-
bution simply factorizes:

Pi(X,Y |C) =
∑

Si

Pi(X,Y,Si|C)

=
∑

Si

P (X,Y |C)Pi(Si|C)

= P (X,Y |C)
∑

Si

Pi(Si|C)

= P (X,Y |C)

Similarly for Pj(X,Y |C). The joint (conditional) dis-
tribution over X,Y |C is invariant to the changing in-
terventions in Ei and Ej . It follows as a trivial con-
sequence that the marginals P (X|C) and P (Y |C) are
also invariant. Consequently, the independence test
TX,Y |C is invariant to the distributions of both experi-
ments and the data relevant to this test can be pooled.

We have specified a sufficient condition that allows for
pooling of data. A simple example will illustrate the
main claim.

Suppose we have the following true graph:

X

W

>>}}}}}}}}

  B
BB

BB
BB

B

Y

We have two experiments. One is passive observational
(above), one is an intervention on W , i.e.

X

IW
// W

>>}}}}}}}}

  A
AA

AA
AA

A

Y

The theorem says that we cannot pool for the (uncon-
ditional) test TX,Y (whether X is independent of Y ),
because IW is not d-separated from {X,Y } in the sec-
ond experiment. However, we can pool for the test
TX,Y |W (whether X and Y are independent condi-
tional on W ).
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The theorem does not specify a necessary condition,
since the intervention distributions can be tweaked
in such ways as to preserve the invariance properties
of the distributions relevant to the independence test
even if the d-separation condition is not satisfied. Triv-
ially, this can be done if the intervention distribution
of a variable is essentially the same as the passive ob-
servational distribution for that variable.

5. Discussion

While the above theorem specifies a sufficient condi-
tion for pooling which might resolve some conflicts
in sequences of experiments, it requires substantial
knowledge about the causal structure. Whether or
not we can pool for a particular independence test
depends on whether the changing interventions are d-
separated from the changing interventions and – more
importantly – whether we know that this d-separation
condition is satisfied. But we are trying to discover

the causal structure in the first place. Only in very
sparse graphs, or if only very few conflicts occur in
our sequence of experiments will we be able to know
whether the condition is satisfied. Furthermore, it re-
quires the search algorithm to store information about
which independence test determined a non-adjacency
in each experiment, so that the problematic test can
be identified for possible conflict resolution afterwards
(or one has to find it again). The result therefore, does
not provide a simple solution for sequences of experi-
ments.

However, the result applies generally and is not specific
to particular families of distributions. It is therefore
directly relevant to techniques in meta-analysis. In
particular, if the d-separation condition specified in the
theorem is known to fail, then there is particular rea-
son for concern if unexpected correlations or indepen-
dencies occur when data is pooled. If the d-separation
relation is known to hold, then there is a possibility
of obtaining results with a higher significance even for
cases where joint distributions are known to be differ-
ent or where there are correlated interventions.

The description of possible conflicts is not exhaustive.
We list all the conflicts that occur if the search algo-
rithm only determines adjacencies in each experiment.
However, there are well known cases where the direc-
tion can be determined as well: First, if an adjacency
is found between an intervened variable and any other
variable in the system, then we know that the direction
of the arrow is out of the intervened variable. Second,
if there are three passively observed variables X,Y,Z

and (i) X and Y are dependent, (ii) Y and Z are de-
pendent, (iii) X and Z are independent, and (iv) X

and Z are dependent conditional on Y , then we know
that Y is a common effect of X and Z, i.e. X → Y

and Z → Y . This structure is often referred to as
an “unshielded collider” and is identifiable in passive
observational data. If these techniques to determine
direction were included in the structure search algo-
rithm, a variety of further conflicts may arise pertain-
ing to directional information. It is not known whether
this addition would result in faster structure search or
more conflicted results when sampling errors are taken
into account.

6. Conclusion

We have provided a sufficient condition for pooling
data from different joint distributions when variables
have been subject to interventions. The result is al-
most trivial once the semantics of the policy variables
has been made explicit. In that sense, this work is
more a contribution to developing a clear understand-
ing of policy variables, how they are represented in
causal Bayes nets and how they affect the joint distri-
bution over the variables in question. The result vidi-
cates the representation of policy variables as distinct
variables with particular structural constraints in the
graph, since many (though not all) of the properties
for ordinary Bayes net variables carry over. However,
the semantics presented here rejects the notion that
policy variables are just placeholders for fixing a dis-
tribution over the intervened variable. They are bet-
ter understood as decision points for input exogenous
to the system of variables under consideration. The
question we do not address is whether or not there
should be a distribution over the values of the pol-
icy variable. Whether this would be sensible is really
a framing question, since the answer depends on the
reference frame we use for the discovery problem and
on how the decisions for or against interventions are
made.

The key problem with regard to the application of the
central pooling theorem to structure search is that in
many cases we will not know whether the d-separation
condition is satisfied or not. Nevertheless, it specifies
a clear and fairly general condition for meta-analysis,
since it is intervention and distribution independent.
Perhaps more importantly to meta-analysis, however,
is that the use of this theorem is not restricted to inde-
pendence tests. Since it guarantees the invariance of
the marginal/conditiona distributions, these can also
be used for parameter estimation. This is useful in
meta-analyses where the causal structure is (largely)
known, but where more data is needed to perform ac-
curate parameter estimation. Here satisfaction of the
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d-separation condition can be checked easily and data
pooled accordingly.
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Figure 1. A plot of 1,000 samples of X and Y from the
linear structural equation model with gaussian error terms
under passive observation in Example 1. As expected given
the causal structure, X and Y appear independent.

Figure 2. A plot of 1,000 samples of X and Y from the
linear structural equation model with gaussian error terms
with interventions on W and Z in Example 1. Again, as
expected given the manipulated causal structure, X and Y

appear independent.

Figure 3. Samples of X and Y from the passive observa-
tional distribution mixed with samples from the distribu-
tion, where W and Z were subject to an intervention shown
with a fitted regression line. X and Y no longer appear in-
dependent.
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Figure 4. Plot of 1,000 samples of X and Y drawn from
the passively observed causal structure in Example 2. As
expected, X and Y are found to be dependent with a high
significance (p < 0.001). The regression line is shown, the
slope is slight, since the X → Z connection is weak, but
the significance is what matters here.

Figure 5. Plot of 1,000 samples of X and Y drawn from
the manipulated distribution where Z was subject to an
intervention in Example 2. As expected, X and Y are
independent.

Figure 6. Samples from both the passively observed and
manipulated distributions are pooled. X and Y are inde-
pendent.


