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Abstract This article presents an overview of several
known approaches to causal discovery. It is organized
by relating the different fundamental assumptions that
the methods depend on. The goal is to indicate that for a
large variety of different settings the assumptions nec-
essary and sufficient for causal discovery are now well
understood.
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1 Introduction

Like many scientific concepts, causal relations are not
features that can be directly read off from the data, but
have to be inferred. The field of causal discovery is
concerned with this inference and the assumptions that
support it. We might have measures of different quan-
tities obtained from, say, a cross-sectional study, on the
amount of wine consumption (for some unit of time)
and the prevalence of cardio-vascular disease, and be
interested in whether wine consumption is a cause of
cardio-vascular disease (positivey or negatively), and
not just whether it is correlated with it. That is, we
would like to know whether the observed dependence
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between wine consumption and cardio-vascular disease
(suppose there is one) persists even if we change, say,
in an experiment, the amount of wine that is consumed
(see Fig. 1). The observed dependence between wine
consumption and cardio-vascular disease may, after all,
be due to a common cause, such as socio-economic-
status (SES), where those people with a higher SES
consume more wine and are able to afford better health
care, whereas those with a lower SES do not consume
as much wine and have poorer healthcare1. The ex-
ample illustrates the common mantra that “correlation
does not imply causation” and suggests that causal rela-
tions can be identified in an experimental setting, such
as a randomized controlled trial where each individ-
ual in the experiment is randomly assigned to either
the treatment or control group (in this case, to different
levels of wine consumption) and the effect on cardio-
vascular disease is measured. The randomized assign-
ment makes the wine consumption independent of its
normal causes (at least in the large sample limit) and
thereby destroys the “confounding” effect of SES. Nat-
urally, there are many concerns about such an analysis,
starting from the ethical concerns of such a study, the
compliance with treatment, the precise treatment lev-
els, the representativeness of the experimental popula-
tion with respect to the larger population etc., but the
general methodological reason, explicitly emphasized
in R.A. Fisher’s well-known work on experimental de-
sign [6], of why randomized controlled trials are useful

1 See a discussion of this example in Scientific American [22].
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for causal discovery becomes evident: randomization
breaks confounding, whether due to an observed or un-
observed common cause.

Causal relations are of interest because only an un-
derstanding of the underlying causal relations can sup-
port predictions about how a system will behave when
it is subject to intervention. If moderate wine consump-
tion in fact causes the reduction in the risk of cardio-
vascular disease (this article takes no stand on the truth
of this claim), then a health policy that suggests mod-
erate wine consumption can be expected to be effec-
tive in reducing cardio-vascular disease (with due note
to all the other concerns about implementation). But if
the observed dependence is only due to some common
cause, such as SES, then a policy that changes wine
consumption independently of SES would have no ef-
fect on cardio-vascular disease.

A purely probabilistic representation of these rela-
tions is ambiguous with respect to the underlying causal
relations: That is, if we let wine consumption be X
and cardio-vascular disease be Y , then, without further
specification, P (Y |X), the conditional probability of
cardio-vascular disease given a particular level of wine
consumption, is ambiguous with regard to whether it
describes the relation in an experimental setting in which
the wine consumption was determined by randomiza-
tion or whether it describes observational relations, such
as in the initial example of a cross-sectional study. Judea
Pearl introduced the do(.)-operator as a notation to dis-
tinguish the two cases [31]. Thus, P (Y |X) is the ob-
servational conditional probability describing how the
probability of Y would change if one observed X (e.g.
in a cross-sectional study) while P (Y |do(X)) is the in-
terventional conditional probability, describing the prob-
ability of Y when X has been set experimentally. Of
course, not all data can be classified cleanly as obser-
vational vs. interventional, since there might well be
experiments that do not fully determine the value of
the intervened variable. But for the sake of this article,
the distinction will suffice (see [28] and [5] for further
discussion).

In light of the general underdetermination of causal
relations given any probability distribution, it is useful
to represent the causal structure explicitly in terms of a
directed graph. Unlike other graphical models with di-
rected or undirected edges, which merely represent an
independence structure, causal graphical models sup-
port a very a strong interpretation: For a given set of

variables V = {X1, . . . Xn}, a causal graphG = {V,E}
represents the causal relations over the set of variables
V, in the sense that for any directed edge e = Xi →
Xj in E,Xi is a direct cause ofXj relative to variables
in V. So the claim of an edge in G is that even if you
randomize all other variables in V \ {Xi, Xj}, thereby
breaking any causal connection between Xi and Xj

through these other variables, Xi still has a causal ef-
fect on Xj . Moreover, the causal graph characterizes
the effect of an intervention on Xi on the remaining
variables precisely in terms of the subgraph that results
when all directed edges into Xi are removed from G.
Thus, a causal graph not only makes claims about the
causal pathways active in an observational setting, but
also indicates which causal pathways are active in any
experiment on the set of variables in V. Naturally, a
direct cause between Xi and Xj may no longer be di-
rect once additional variables are introduced – hence
the relativity to the set V.

We use intuitive (and standard) terminology to refer
to particular features of the graph: A path between two
variables X and Y in G is defined as a non-repeating
sequence of edges (oriented in either direction) in G

where any two adjacent edges in the sequence share a
common endpoint and the first edge “starts” with X

and the last “ends” with Y . A directed path is a path
whose edges all point in the same direction. A descen-
dent of a vertex Z is a vertexW ∈ V, such that there is
a directed path Z → . . . → W in the graph G. Corre-
spondingly, Z is ancestor ofX . The parents of a vertex
X are the vertices in V with a directed edge oriented
into X , similarly for the children of a vertex.2 A col-
lider on a path p is a vertex on p whose adjacent edges
both point into the vertex, i.e.→ Z ←. A non-collider
on p is a vertex on p that is not a collider, i.e. it is a me-
diator (→ Z →) or a common cause (← Z →). Note
that a vertex can take on different roles with respect to
different paths.

2 Basic Assumptions of Causal Discovery

Given the representation of causal relations over a set
of variables in terms of causal graphs, causal discovery
can be characterized as the problem of identifying as

2 In a somewhat counter-intuitive usage of terms, a vertex is
also its own ancestor and its own descendent, but not its own
parent or child.
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Fig. 1 (a) and (c) are two possible causal models that would explain an observed dependence between wine drinking and heart disease.
But only in the case of (a) would that dependence persist if one were to intervene on wine drinking in an experiment. In (b) the
intervention would destroy the dependence and make wine drinking independent of heart disease (d).

much as possible about the causal relations of interest
(ideally the whole graph G) given a dataset of mea-
surements over the variables V. To separate the causal
part from the statistical part of the inference it is – at
least for an introduction – useful to think of causal dis-
covery as the inference task from the joint distribution
P (V) to the graph G, leaving the task of estimating
P (V) from the finite data to the statistician.3 In princi-
ple, there is no a priori reason for the joint distribution
P (V) to constrain the possible true generating causal
structures at all. We noted earlier that correlation does
not imply causation (and similarly, the converse is not
true either, though that may not be as obvious initially).
Yet, we do take both dependencies and independencies
as indicators of causal relations (or the lack thereof).
For example, it seemed perfectly reasonable above to
claim that if a dependence between X and Y was de-
tected in a randomized controlled trial where X was
subject to intervention, then X is a cause of Y (again
modulo the many other assumptions about successful
experiment implementation). Similarly, in the observa-
tional case, the dependence between X and Y , if it was
not a result of a direct cause, was explained by a com-
mon cause. Consequently, there seem to be principles

3 In order to separate out limitations and sources of error in the
overall inference it can be helpful to make the following three-
way distinction: Statistical inference concerns the inference from
data to the generating distribution or properties of the generat-
ing distribution, such as parameter values or (in)dependence re-
lations. Causal discovery concerns the inference of identifying
as much as possible about the causal structure given the sta-
tistical quantities, such as a probability distribution or its fea-
tures. Causal inference concerns the determination of quantita-
tive causal effects given the causal structure and associated sta-
tistical quantities. Of course, these three inference steps are not
always completely separable and there are plenty of interesting
approaches that combine them.

we use – more or less explicitly – that connect proba-
bilistic relations to causal relations.

Two such principles that have received wide ap-
plication in the methods of causal discovery are the
causal Markov and the causal faithfulness conditions.
The high-level idea is that the causal Markov and faith-
fulness conditions together imply a correspondence be-
tween the (conditional) independences in the proba-
bility distribution and the causal connectivity relations
within the graph G. Causal connectivity in a graph is
defined in terms of d-separation and d-connection [30]:
A path p between X and Y d-connects X and Y given
a conditioning set C ⊆ V \ {X,Y } if and only if (i)
all colliders on p are in C or have a descendent in C

and (ii) no non-colliders of p are in C. X and Y are d-
separated if and only if there are no d-connecting paths
between them. D-separation is often denoted by the sin-
gle turnstile ‘⊥’.

The causal Markov and the causal faithfulness as-
sumptions (defined and discussed below) together en-
sure that (conditional) d-separation corresponds to (con-
ditional) probabilistic independence, i.e.

X ⊥ Y | C ⇔ X ⊥⊥ Y | C (1)

For causal discovery, this type of correspondence
is enormously useful as it allows inferences from the
(conditional) independence relations testable in data to
the underlying causal structure. It can now be seen in
what sense the claim that “correlation does not imply
causation” still holds true, while a non-zero correlation
can still provide an indication about existing causal re-
lations: In particular, for two variables, a non-zero cor-
relation would imply that the variables are d-connected
given the empty set, i.e. that one causes the other or
vice versa, or that there is a third variable that causes
both. So while no specific causal relation can be deter-
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mined, a subset of possible causal relations – an equiv-
alence class of causal structures – can be identified. The
correspondence also implies that two independent vari-
ables are causally disconnected (d-separated). So in the
case of a linear Gaussian model, where no correlation
implies independence, it follows that no correlation im-
plies no causation.

Of course, (in)dependence features are only one set
of features that a distribution P (V) may exhibit, and to
the extent that one is able to characterize other princi-
ples that connect other features of the distribution to the
underlying causal structure, they can also be exploited
for causal discovery – as we shall see below. Causal
Markov and causal faithfulness only provide one set
of what one might call “bridge principles”, and they
underlie many methods of so-called “constraint-based
causal discovery”.

Before proceeding, it is worth making explicit what
causal Markov and causal faithfulness claim, and un-
der what circumstances they may be false. The causal
Markov condition states that every vertexX in the graph
G is probabilistically independent of its non-descendents
given its parents, i.e. X ⊥⊥ NonDesc(X) | Pa(X).
The causal Markov assumption appears to be a very
fundamental assumption of our understanding of causal-
ity, since it is quite difficult to come up with situations
that we consider to be causal and yet violate causal
Markov. There are many ways in which a system may
appear to violate causal Markov. For example, if one
only considers two variables X and Y , but in fact there
is an unmeasured common cause L of X and Y , i.e.
X ← L → Y , then Y is a non-descendent of X but
X and Y will be dependent. Naturally, this situation
is quickly remedied once L is included in the model
and L is conditioned on (as a parent of X). Similar
cases of “model-misspecifications” can lead to appar-
ent violations of the Markov conditions when we have
mixtures of different populations, there is sample selec-
tion bias, misspecified variables or variables that have
been excessively coarse-grained (see [13] for more dis-
cussion). But in all these cases an appropriate specifi-
cation of the underlying causal model will provide a
causal system that is consistent with the Markov con-
dition. To my knowledge, only in the case of quantum
mechanics do we have systems for which we have good
reasons to think they are causal and yet there does not
appear to be a representation that respects the Markov
condition. It is not entirely clear what to make of such

cases. As Clark Glymour puts it, “[The Aspect exper-
iments (that test the Einstein-Podolski-Rosen predic-
tions)] create associations that have no causal expla-
nation consistent with the Markov assumption, and the
Markov assumption must be applied [...] to obtain that
conclusion. You can say that there is no causal expla-
nation of the phenomenon, or that there is a causal ex-
planation but it doesn’t satisfy the Markov assumption.
I have no trouble with either alternative.” [10]

The situation is quite different with regard to causal
faithfulness. It states the converse of the Markov con-
dition, i.e. if a variable X is independent of Y given a
conditioning set C in the probability distributionP (V),
then X is d-separated from Y given C in the graph G.
Faithfulness can be thought of as a simplicity assump-
tion and it is relatively easy to find violations of it –
there only have to be causal connections that do not
exhibit a dependence. For example, if two causal path-
ways cancel out each other’s effects exactly, then the
causally connected variables will remain independent.
A practical example is a back-up generator: Normally
the machine is powered by electricity from the grid,
but when the grid fails, a back-up generator kicks in
to supply the energy, thereby making the operation of
the machine independent of the grid, even though of
course the grid normally causes the machine to work or
when it fails it causes the generator to switch on, which
causes the machine to work.4 While such failures of
faithfulness require an exact cancellation of the causal
pathways, with finite data two variables may often ap-
pear independent despite the fact that they are (weakly)
causally connected (see [47]).

To keep the present introduction to causal discov-
ery simple initially, we can add additional assumptions
about the underlying causal structure. Two commonly
used assumptions are that the causal structure is as-
sumed to be acyclic, i.e. that there is no directed path
from a vertex back to itself inG, and causal sufficiency,
i.e. that there are no unmeasured common causes of any
pair of variables in V. Both of these assumptions are
obviously not true in many domains (e.g. biology, so-
cial sciences etc.) and below we will see how methods
have been developed that do not depend on them. For

4 This example is taken from [12].
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now they help to keep the causal discovery task more
tractable and easy to illustrate.5

With these conditions in hand (Markov, faithful-
ness, acyclicity and causal sufficiency), we can now ask
what one can learn about the underlying causal rela-
tions given the (estimated) joint distribution P (V) over
a set of variables V. Can we learn anything about the
causal relation at all without performing experiments or
having information about the time order of variables?

In fact, substantial information can be learned about
the underlying causal structure from an observational
probability distribution P (V) given these assumptions
alone. In 1990, Verma & Pearl [32] and Frydenberg
[7] independently showed that any two acyclic causal
structures (without unmeasured variables) that are Markov
and faithful to the same distribution P (V) share the
same adjacencies (the same undirected graphical skele-
ton) and the same unshielded colliders. An unshielded
collider is a collider whose two parents are not adjacent
in G. Thus, Markov and faithfulness imply an equiva-
lence structure over directed acyclic graphs, where graphs
that are in the same equivalence class have the same
(conditional) independence structure, the same adjacen-
cies and the same unshielded colliders. For three vari-
ables the Markov equivalence classes are shown in Fig. 2.
Note that the graph X → Z ← Y is in its own equiv-
alence class. That means that independence constraints
alone are sufficient to uniquely determine the true causal
structure G if it is of the form X → Z ← Y (given
the conditions stated). This is rather significant, since
it implies that sometimes no time order information
or experiment is necessary to uniquely determine the
causal structure over a set of variables. More gener-
ally, knowing the Markov equivalence class of the true
causal structure substantively reduces the underdeter-
mination. In general, no closed form is known for how
many equivalence classes there are or how many graphs
there are per equivalence class, but large scale simu-
lations have been run [9,11]. It is worth noting that
for any number of variables N , there will always be
several singleton equivalence classes (e.g. the empty
graph, or those containing only unshielded colliders),

5 Especially with regard to the assumption of acyclicity it is
worth noting that very subtle issues arise both about what exactly
we mean when we allow for causal cycles, and how one may
infer something about a system in which there are such feedback
loops. The interested reader is encouraged to purse the references
on cyclic models mentioned below.

but that there will also always be at least one equiva-
lence class that contains N ! graphs, namely the class
containing all the graphs for which each pair of vari-
ables is connected by an edge – the set of complete
graphs.

Algorithms have been developed that use conditional
independence tests to determine the Markov equiva-
lence class of causal structures consistent with a given
dataset. For example, the PC-algorithm [41] was devel-
oped on the basis of exactly the set of assumptions just
discussed (Markov, faithfulness, acyclicity and causal
sufficiency) and uses a sequence of carefully selected
(conditional) independence tests to both identify as much
as possible about the causal structure and to perform as
few tests as possible. In a certain sense the PC-algorithm
is complete: it extracts all information about the under-
lying causal structure that is available in the statements
of conditional (in)dependence. Or more formally, this
bound can be characterized in terms of a limiting result
due to Geiger and Pearl [8] and Meek [26]:

Theorem 1 (Markov completeness) For linear Gaus-
sian and for multinomial causal relations, an algorithm
that identifies the Markov equivalence class is com-
plete.

That is, if the causal relations between the causes and
effects inG can be characterized either by a linear Gaus-
sian relation of the form xi =

∑
j 6=i ajxj+εi with εi ∼

N(µi, σ
2
i ) or by conditional distributionsP (Xi | pa(Xi))

that are multinomial, then the PC-algorithm, which in
the large sample limit identifies the Markov equiva-
lence class of the true causal model, identifies as much
as there is to identify about the underlying causal model.

One can see such a result as a success in that there
are methods that reach the limit of what can be dis-
covered about the underlying causal relations, or one
can be disappointed about the underdetermination one
is left with given that at best this only allows the iden-
tification of the Markov equivalence class. Moreover,
one might have reason to think that even some of the
assumptions required to achieve this limit are unrea-
sonably optimistic about real world causal discovery.
Consequently, there are a variety of ways to proceed:

1. One could weaken the assumptions, thereby (in gen-
eral) increasing the underdetermination of what one
will be able to discover about the underlying causal
structure. For example, the FCI-algorithm [41] drops
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Fig. 2 The Markov equivalence classes for all three variable directed acyclic graphs without latent variables. Graphs in the same
equivalence class share the same (conditional) independence structure.

the assumption of causal sufficiency and allows for
unmeasured common causes of the observed vari-
ables; the CCD-algorithm [36] drops the assump-
tion of acyclicity and allows for feedback, and the
SAT-based causal discovery methods discussed be-
low can drop both assumptions. Alternatively, Zhang
& Spirtes [49] have worked on weakening the as-
sumption of faithfulness, with corresponding algo-
rithms presented in a paper in this issue. In all cases
the aim of these more general approaches is to de-
velop causal discovery methods that identify as much
as possible about the underlying causal relations.

2. The limits to causal discovery described in Theo-
rem 1 apply to restricted cases – multinomials and
linear Gaussian parameterizations. One can exclude
these cases and ask what happens when the distri-
butions are not linear Gaussian or not multinomial.
We consider several such approaches below.

3. One could consider more general data collection
set-ups to help reduce the underdetermination. For
example, one could consider the inclusion of spe-
cific experimental data to reduce the underdetermi-
nation or use additional “overlapping” datasets that
share some but perhaps not all the observed vari-
ables (see [44] for an overview).

We will start by pursuing the second option in Sec-
tions 3, 4 and 5, and return to consider the first and
third option in Section 6.

3 Linear non-Gaussian Models

One way of avoiding the limitation of causal discov-
ery to only identifying the Markov equivalence class
of the true causal model is to exclude the restrictions
of Theorem 1. We will first consider the case of linear
non-Gaussian models, that is, we will consider causal
models where each variable is determined by a linear
function of the values of its parents plus a noise term
that has a distribution that is anything (non-degenerate)
except Gaussian:

xi =
∑
j 6=i

ajxj + εi with εi ∼ non-Gaussian (2)

The remarkable result for causal discovery, shown by
Shimizu et al. [39], is that this rather weak assump-
tion about the error distribution is sufficient to uniquely
identify the true causal model. Thus,

Theorem 2 (Linear Non-Gaussian) Under the assump-
tion of causal Markov, acyclicity and a linear non-Gaussian
parameterization (Eq. 2), the causal structure can be
uniquely determined.



Introduction to the Foundations of Causal Discovery 7

Fig. 3 In the “forwards” model (left) we have x ⊥⊥ εy and y 6⊥⊥
εx, while in the “backwards” model (right) we have x 6⊥⊥ ε̃y and
y ⊥⊥ ε̃x. Assuming a linear non-Gaussian parameterization, it is
not possible that both the forwards and the backwards model can
be fit to the data, hence this assumption can aid the identifiability
of causal direction.

Not even faithfulness is required here. Thus, merely the
assumption that the causal relations are linear and that
the added noise is anything but Gaussian guarantees in
the large sample limit that the true causal model can be
uniquely identified.

It helps to gain some intuition regarding this result
from the two variable case: If we find that x and y are
dependent and we assume acyclicity and causal suffi-
ciency, then the Markov equivalence class contains two
causal structures, x → y and x ← y. Consider the
“forwards” model in Fig. 3, in which the (unobserved)
noise terms are represented in terms of explicit vari-
ables:

y = βx+ εy (3)

D-separation implies that in this model x is inde-
pendent of the residuals on y, i.e. x ⊥⊥ εy . The “back-
wards” model would take the form:

x = θy + ε̃x (4)

We can re-write the equation for the backwards model,
and substituting the forwards model for y, we get

ε̃x = (1− θβ)x− θεy (5)

Note that Equations 3 and 5 are linear in terms of the
random variables x and εy , which are both non-Gaussian,
but – if the forwards model is true – independent of one
another. We can now apply the Darmois-Skitovich the-
orem that states:

Theorem 3 (Darmois-Skitovich) Let X1, . . . , Xn be
independent, non-degenerate random variables. If for

two linear combinations

l1 = a1X1 + . . .+ anXn with ai 6= 0

l2 = b1X1 + . . .+ bnXn with bi 6= 0

are independent, then each Xi is normally distributed.

Taking the contrapositive, and substituting the variables
of the above example, if x and εy are independent, non-
degenerate random variables that are not normally dis-
tributed, then the two linear combinations y and ε̃X
(Equations 3 and 5) are not independent. That is, if we
mistakenly fit a backwards model to data that in fact
came from a forwards model, then we would find that y
and the residuals on x would be dependent, i.e. y 6⊥⊥ ε̃x,
despite the fact that the independence is required by
d-separation on the backwards model. In other words,
we would notice our mistake and would be able to cor-
rectly identify the true (in this case, forwards) model.
Of course, this only proves the point for two variables,
but the more general proofs can be found in [39] with
also some alternative graphical demonstrations that may
help the intuition underlying this identifiability result.
It should also be noted that the Darmois-Skitovich the-
orem underlies the method of Independent Component
Analysis [20].

These powerful identifiability results have been im-
plemented in causal discovery algorithms that go by the
acronym of LinGaM, for Linear non-Gaussian Models,
and have been generalized (with slight weakenings of
the identifiability) to settings where either causal suf-
ficiency [15] or acyclicity [23] is dropped, or where
the data generating process satisfies the LinGaM as-
sumptions, but the actual data is the result of an in-
vertible non-linear transformation, resulting in the so-
called post-nonlinear model [50,51].

4 Non-linear additive noise models

Alternatively, in the continuous case the restrictions of
Theorem 1 can be avoided by considering non-linear
causal relations, i.e. when each variable xj is deter-
mined by a non-linear function fj of the values of its
parents plus some additive noise

xj = fj(pa(xj)) + εj (6)

We know (from the previous section) that when the fj
are linear, then identifiability requires that the error dis-
tributions are non-Gaussian. But one can ask what the
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conditions for unique identifiability of the causal struc-
ture are when the fj are non-linear (and there are no
restrictions other than non-degeneracy on the error dis-
tributions). Identifiability results of this kind are devel-
oped in Hoyer et al. [14] and Mooij et al. [27]: The
authors characterize a very intricate condition – I will
here only refer to it as the Hoyer condition – on the
relation between the function f , the noise distribution
and the parent distribution6, and provide the following
theorem:

Theorem 4 (non-linear additive noise) Under the as-
sumption of Markov, acyclicity and causal sufficiency
and a non-linear additive noise parameterization (Eq. 6),
unless the Hoyer condition is satisfied, the true causal
structure can be uniquely identified.

In particular, this theorem has the following corrolaries:

– If the (additive) error distributions are all Gaussian,
then the only functional form that satisfies the Hoyer
condition is linearity, otherwise the model is uniquely
identifiable.

– If the (additive) error distributions are non-Gaussian,
then there exist (rather contrived) functions that sat-
isfy the Hoyer condition, but in general the model
is uniquely identifiable.

– If the functions are linear, but the (additive) error
distributions are non-Gaussian, then there does not
exist a linear backwards model (this is the result
of the LinGaM approach of the previous section),
but there exist cases where one can fit a non-linear
backwards model [51].

The basic point of these identifiability results is that –
although somewhat more complex than the linear non-
Gaussian case – as soon as the functional relation be-
tween cause and effect becomes non-linear, and as long
as the noise is additive, then (except for the rather spe-
cial cases that satisfy the Hoyer condition), the true
model is uniquely identifiable.

Again, an understanding of these results may be
aided with a simple example of two variables (taken
from [14]). Fig. 4a-c show first the data from a linear
Gaussian model. As the “cuts” through the data indi-
cate, no matter whether one fits the forwards or the

6 An explicit statement of the condition is omitted here as it
requires a fair bit of notation and no further insight is gained by
just stating it. The intrigued reader should refer to the original
paper, which is a worthwhile read in any case.

backwards model, a Gaussian distribution of the resid-
uals can be found that is independent of the value of the
respective cause (x in the forwards, and y in the back-
wards model). However, panels d-f show that this no
longer is true if the true model is in fact a non-linear
Gaussian (forwards) model: While the error distribu-
tion is independent of the value of the cause in the (cor-
rect) forwards model, the error distribution on x is de-
pendent on the value of y if one attempts to construct
a backwards model, i.e. we have y 6⊥⊥ ε̃x, when in fact
an independence is required for the backwards model
to be true.

Causal discovery algorithms have been developed
for these settings (see the papers) and the identifiability
results have been generalized [35], including to certain
types of discrete distributions (see next section). There
have – to my knowledge – not been extensions to the
causally insufficient or cyclic case.

In light of the identifiability results of this section
and the previous one it is ironic that so much of struc-
tural equation modeling has historically focused on the
linear Gaussian case. The identifiability results men-
tioned here indicate that this focus on computationally
simple models came at the expense of the identifiabil-
ity of the underlying causal model. So in cases when
the true causal model is known, then linear Gaussian
parameterizations make the computation of causal ef-
fects very easy, but for the identifiability of the model
in the first place, the linear Gaussian case is about as
bad as it could be.

5 Restrictions on multinomial distributions

Naturally, one can also consider the possibilities of avoid-
ing the limitations placed on causal discovery by The-
orem 1 with respect to discrete distributions. This has
been a much less explored direction of inquiry, pos-
sibly due to the difficulty of estimating specific fea-
tures of discrete distributions, especially when the state
space is finite. Alternatively, the domain of application
of discrete distributions may provide only much weaker
grounds for the justification of assumptions that pick
out specific discrete distributions. The multinomial dis-
tribution therefore provides a useful unconstrained model,
yet causal identifiability is limited to the Markov equiv-
alence class.
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Fig. 4 (a) Linear Gaussian model with x = εx and y = x + εy with εx, εy distributed according to independent Gaussians. Both a
“forwards” model (x→ y) and a “backwards” model (x← y) can be fit to the data (panels b & c). However, in the case of a non-linear
Gaussian model as in (d), where x = εx, but y = x + x3 + εy with εx, εy distributed according to independent Gaussians, we see
that when fitting the “backwards” model (f), the distribution of the residuals on x are dependent on the value of y, while the residuals
on y are independent of x when fitting the (correct) “forwards” model (e). (Graphics taken from [14].)

However, in a couple of papers by Peters et al. [33,
34], the authors extend the additive noise approach dis-
cussed in the previous section to the discrete case. While
the variables take on discrete values, the causal rela-
tions follow the formal restrictions of the continuous
case:

Y = f(X) +N (7)

where the noise term N and the variable X are proba-
bilistic and the addition now is in the space of integers
Z or some “cyclic” space of values Z/mZ for some
integer m. The associated identifiability results under
the assumption of causal sufficiency and acyclicity of
the causal structure show that only for very specific
choices of functions f and distributions over N is it
possible to fit both a forwards modelX → Y and back-
wards model X ← Y to the data. In the generic case
the causal direction is identified.

Instead of considering additive noise models, Park
& Raskutti [29] consider discrete variables with Pois-
son distributions. Again, the causal structure can be
identified as long as the variables have non-zero vari-
ances in specific settings (see their Theorem 3.1 for the

precise condition). The key idea that drives the iden-
tifiability result in this case is overdispersion. For a
variable X that is marginally Poisson distributed, we
haveE(X) = V ar(X), but for a variable Y | X that is
conditionally Poisson distributed, we have V ar(Y ) >

E(Y ). The argument is nicely illustrated with the sim-
ple bivariate example on p.3 in [29].

To my knowledge there is very little work (other
than some subcases of the additive noise models re-
ferred to above) that has developed general restrictions
to enable identifiability of the causal structure for dis-
crete models with finite state spaces, even though it is
known that the assumption of a so-called “noisy-OR”
parameterization enables in some cases identifiability
beyond that of Markov equivalence.

6 Experiments and background knowledge

The previous several sections have considered the chal-
lenge of causal discovery in terms of finding weak generic
assumptions about the nature of the underlying causal
system that will enable or at least aid the identifiability
of the true causal model. But for any concrete problem
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of causal discovery in application, the search space of
candidate causal models will often not include all pos-
sible causal structures over the set of variables in the
first place, but be highly constrained by available back-
ground knowledge concerning e.g. particular causal path-
ways, time ordering, tier orderings of variables (i.e. that
some subsets of variables come before others) or even
less specific prior knowledge about, say, the edge den-
sity or the connectivity of the true causal structure. This
type of background knowledge can similarly aid the
identifiability of the causal model, possibly even with-
out making additional assumptions about the functional
form of the causal relations.

Recent developments using general constraint sat-
isfaction solvers have enabled the integration of ex-
traordinarily general background information into the
causal discovery procedure. The high-level idea of these
approaches is to encode (to the extent possible) all the
available information as constraints in propositional logic
on the underlying causal graph structure. For example,
if data was collected and a conditional independence
test was performed, then the implications of that test
for the d-separation relations in the graph should be en-
coded in propositional logic. Similarly, if background
information concerning specific pathways is available,
it should also be translated into a logical constraint. To
do so, fundamental propositional variables have to be
defined that, if true, state that a particular directed edge
is present in the graph. Thus, we might have

A = ‘x→ y is present in G’

B = ‘x← y is present in G’

If there are only two variables (V = {x, y}) then an
independence can be encoded as

x ⊥⊥ y ⇔ ¬A ∧ ¬B

When there are more than two variables, the implied
logical constraints will become larger. A pathway could
be formulated as a conjunction of edges or, if it is only
known that there is a causal pathway from x to y, but
it is not known which other variables it passes through,
it could be formulated as a dependence between x and
y in an experiment in which only x is subject to inter-
vention. Such a dependence would in turn be spelled
out in terms of a disjunction of possible d-connecting
pathways. The key is to find a logical encoding that
enables a concise representation of such statements so

that one does not have to explicitly state all the possible
disjunctions. Hyttinen et al. [18,16] have experimented
with various encodings for a completely general search
space that allows for causal models with latent vari-
ables and cycles. Triantafillou et al. [46,45] have de-
veloped encodings for the acyclic case.

Once all the information has been encoded in con-
straints in propositional logic, one can use standard Boolean
SAT(isfiability) solvers to determine solutions consis-
tent with the joint set of constraints. The nice feature of
using these solvers is that they are entirely domain gen-
eral and highly optimized. Consequently, with a suit-
ably general encoding one can integrate heterogeneous
information from a variety of different sources into the
discovery procedure.

A solver will return either one solution consistent
with the constraints – that is, one assignment of truth
values to the atomic propositional variables, which in
turn specify one graph – or it can return only the truth
value for those atomic variables that have the same truth
value in all the solutions consistent with the constraints.
A so-called “backbone” of the constraints specifies those
features of the causal graph that are determined in light
of the constraints.

However, constraints may conflict, in particular if
they are the result of statistical tests. In that case a SAT-
solver only returns that there is no solution for the set
of constraints. For example, for the following set of
independence constraints there is no graph (satisfying
Markov and faithfulness) that is consistent with them:

x ⊥⊥ y x 6⊥⊥ z y 6⊥⊥ z x ⊥⊥ y | z

Rejecting the first constraint would make the constraints
consistent with the graph x → y → z (and its Markov
equivalence class). Rejecting the fourth constraint makes
the constraints consistent with the graph x → z ← y.
But together they are inconsistent (assuming Markov
and faithfulness).

However, if each constraint were accompanied by
a weight representing the degree of confidence in the
truth of that constraint, then one might have a prefer-
ence over which constraint should be rejected. In par-
ticular, the following optimization used by [16] may
seem reasonable: Select a graph that minimizes the sum
of the weights of the unsatisfied constraints:

Ĝ ∈ min
G

∑
k:G 6|=k

w(k)
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In this formalization, the causal discovery problem has
now been converted into a weighted constrained opti-
mization problem for which off-the-shelf maxSAT solvers
can be applied, which guarantee to find the globally op-
timal solution. We now only have to determine suitable
weights for the constraints. Hyttinen et al. [16] have
experimented with different weighting schemes, from
ones that are motivated by a preference for the sim-
plest model in light of any detected dependencies, to
a pseudo-Bayesian weighting scheme. Other weighting
schemes, e.g. based on p-values, can be found in [45]
and [24]. The more general question of how one should
weight background knowledge such that it is well cali-
brated with any other available information remains an
open research challenge, for which even the standard
of success remains to be formulated.

While these SAT-based approaches are incredibly
versatile in terms of the information they can integrate
into the search procedure, and while they can achieve
remarkably accurate results, they do not yet scale as
well as other causal discovery algorithms. But there
are several comments worth making in this regard: (i)
The runtime of a constraint optimization using standard
SAT-based solvers has a very high variance; many in-
stances can be resolved in seconds while some can take
vastly longer. (ii) The runtime is highly dependent on
the set of constraints available and the search spaces
they are applied to; for example [19] used a SAT-based
method for causal discovery in the highly constrained
domain of sub-sampled time series and were able to
scale to around 70 variables. (iii) We can expect sig-
nificant improvements in the scalability with the devel-
opment of more efficient encodings and the paralleliza-
tion of the computation. (iv) One can always explore
the accuracy/speed trade-off and settle for a more scal-
able method with less accurate or less informative out-
put. And finally, (v) if one is actually doing causal dis-
covery on a specific application, one might be willing
to wait for a week for the super-computer to return a
good result.

There is another aspect in which the SAT-based ap-
proach to causal discovery opens new doors: Previous
methods have focused on the identification of the causal
structure or some general representation of the equiv-
alence class of causal structures. SAT-based methods
do not output the equivalence class of causal structures
explicitly, but rather represent it implicitly in terms of
the constraints in the solver. So instead of requesting

as output a “best” causal structure or an equivalence
class, one can also query specific aspects of the under-
lying causal system. This is particularly useful if one
is only interested in a specific pathway or the relations
among a subset of variables. In that case one need not
compute the entire equivalence class but can query the
solver directly to establish what is determined about the
question of interest. Magliacane et al. [24] have taken
this approach to only investigate the ancestral relations
in a causal system and Hyttinen et al. [17] used a query-
based approach to check the conditions for the applica-
tions of the rules of the do-calculus [31] when the true
graph is unknown.

7 Outlook

This article has highlighted some of the approaches to
causal discovery and attempted to fit them together in
terms of their motivations and in light of the formal lim-
its to causal discovery that are known. This article is by
no means exhaustive and I encourage the reader to pur-
sue other review articles such as Spirtes & Zhang [42]
to gain a more complete overview. Moreover, there are
many questions concerning comparative efficiency, fi-
nite sample performance, robustness etc. that I have not
even touched on. Nevertheless, I hope to have shown
that there is a vast array of different methods grounded
on a whole set of different assumptions such that the
reader may reasonably have some hope to find a method
suitable (or adaptable) to their area of application. One
almost paradigmatic application of a causal discovery
method is illustrated in the article by Stekhoven et al.
[43]. It exemplifies how a causal discovery method was
applied to observational gene expression data to select
candidate causes of the onset of flowering of the plant
Arabidopsis thaliana. Once candidate causes had been
identified, the researchers actually planted specimen, in
which the genes, which had been determined to be rele-
vant by the causal discovery method, had been knocked
out – the causal hypothesis was put to the experimental
test. I think it is fair to say that the results were positive.

Finally, I will highlight a few areas of causal dis-
covery that I think still require a significant develop-
ment in understanding. Again, the list is not supposed
to be exhaustive, it is certainly colored by my own in-
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terests and of course there already exists some interest-
ing work in each.

Dynamics and time series. Many areas of scientific in-
vestigation describe systems in terms of sets of dy-
namical equations. How can these results be inte-
grated with the methods for causal discovery in time
series? (See e.g. [3,4,48,40,21].)

Variable construction. Standard causal discovery meth-
ods (such as the ones discussed in this article) take
as input a statistical data set of measurements of
well-defined causal variables. The goal is to find the
causal relations between them. But how are these
causal variables identified or constructed in the first
place? Often we have sensor level data but assume
that the relevant causal interactions occur at a higher
scale of aggregation. Sometimes we only have ag-
gregate measurements of causal interactions at a
finer scale. (See e.g. [38,1,2].)

Relational data. In many cases there can be in addi-
tion to the causal relation, a dependence structure
among the causal variables that is not due to the
causal relations, but due to relational features among
the causal variables, e.g. whether an actor is in a
movie, or which friendship relations are present. In
this case we need methods that can disentangle the
dependencies due to the relational structure from
the dependencies due to causality, and there may be
causal effects from the relations to the individuals
and vice versa. (See e.g. [37,25].)

In each of these cases the challenge is not simply to
develop a new discovery method, but also to first char-
acterize precisely the different concepts and what the
goals of causal discovery in these domains are. So while
there is a whole set of causal discovery algorithms ready
to be applied to different domains, there also remain
significant theoretical and conceptual hurdles that need
to be addressed.
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