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Abstract: Using a variety of different results from the literature, I show how causal 

discovery with experiments is limited unless substantive assumptions about the 

underlying causal structure are made. These results undermine the view that experiments, 

such as randomized controlled trials, can independently provide a gold standard for 

causal discovery. Moreover, I present a concrete example in which causal 

underdetermination persists despite exhaustive experimentation, and argue that such 

cases undermine the appeal of an interventionist account of causation as its dependence 

on other assumptions is not spelled out. 



	
  

 

1. Introduction 

Causal search algorithms based on the causal Bayes net representation (Spirtes et al. 

2000; Pearl 2000) have primarily focused on the identification of causal structure using 

passive observational data. The algorithms build on assumptions that connect the causal 

structure represented by a directed (acyclic) graph among a set of vertices with the 

probability distribution of the data generated by the causal structure. Two of the most 

common such bridge principles are the causal Markov assumption and the causal 

faithfulness assumption. The causal Markov assumption states that each causal variable is 

probabilistically independent of its (graphical) non-descendents given its (graphical) 

parents. Causal Markov enables the inference from a probabilistic dependence between 

two variables to a causal connection and from a causal separation to a statistical 

independence. The precise nature of such causal separation and connection relations is 

fully characterized by the notion of d-separation (Geiger et al. 1990; Spirtes et al. 2000, 

3.7.1). The causal faithfulness assumption can be seen as the converse to the Markov 

assumption. It states that all and only the independence relations true in the probability 

distribution over the set of variables are a consequence of the Markov condition. Thus, 

faithfulness permits the inference from probabilistic independence to causal separation, 

and from causal connection to probabilistic dependence. Together causal Markov and 

faithfulness provide the basis for causal search algorithms based on passive observational 

data. For the simplest case they are combined with the assumptions that the causal 

structure is acyclic and that the measured variables are causally sufficient, i.e. that there 

are no unmeasured common causes of the measured variables. For example, given three 



	
  

variables x, y and z, if we find that the only (conditional or unconditional) independence 

relation that holds among the three variables is that x is independent of z given y, then 

causal Markov and faithfulness allow us to infer that the true causal structure is one of 

those presented in Figure 1. 

 

Figure 1 

x  y  z   x  y  z   x  y  z 

 

Causal Markov and faithfulness do not determine which of the three causal structures is 

true, but this underdetermination is well understood for causal structures in general. It is 

characterized by the so-called “Markov equivalence classes” of causal structures. These 

equivalence classes consist of sets of causal structures (graphs) that have the same 

independence and dependence relations among the variables. The three structures in 

Figure 1 are one such equivalence class. To identify the true causal structure uniquely 

there are two options: One can make stronger assumptions about the underlying causal 

model, or one can run experiments. Here I will first focus on the latter to then show that 

one cannot really do without the former. 

 

I will take an experiment to consist of an intervention on a subset of the variables under 

consideration. While there are a variety of different types of interventions, I will focus 

here on experiments involving so-called “surgical” interventions (Pearl 2000). In a 

surgical intervention the intervention completely determines the probability distribution 

of the intervened variable, and thereby makes it independent of its normal causes. Such 



	
  

an intervention is achieved (at least in principle) by a randomized controlled trial: 

whether or not a particular treatment is administered is determined entirely by the 

randomizing device, and not by any other factors. In a causal Bayes net a surgical 

intervention breaks the arrows into the intervened variable, while leaving the remaining 

causal structure intact. It is possible to perform an experiment that surgically intervenes 

on several variables simultaneously and independently. In that case, of course, all 

information about the causal relation among intervened variables is lost. 

 

For the three Markov equivalent structures in Figure 1, a single-intervention experiment 

intervening only on y would distinguish the three causal structures: It would make x 

independent of y if the first structure is true, but not for the second and third. And it 

would make y independent of z if the second structure is true, but not for the first and the 

third. Together these two considerations show that such an experiment on y would 

resolve the underdetermination of this Markov equivalence class completely. 

 

Ever since Ronald A. Fisher’s work in the 1930s, experiments have come to be seen as 

the gold standard for causal discovery (Fisher 1935). This view suggests that if one can 

perform experiments, then causal discovery is (theoretically) trivial. The recent rise of the 

interventionist account of causation in philosophy appears to endorse this view, since it 

holds that just what it is to stand in a causal relation, is the possibility of performing the 

appropriate kind of experiment (Woodward 2003).  

 

2. Underdetermination despite Experiments 



	
  

First the hopeful news: Eberhardt et al. (2005) showed that one can generalize the 

strategy used to identify the true causal structure in Figure 1 to arbitrary causal structures 

over N variables: Assuming that causal Markov, faithfulness and causal sufficiency hold, 

and that the causal structure is acyclic, one can uniquely identify the true causal structure 

among a set of variables given a set of single-intervention experiments. Generally such a 

procedure will require several experiments intervening on different variables, but a 

sequence of experiments that guarantees success can be specified.  

 

Similar results can be obtained without experiments but by instead strengthening the 

assumptions one makes about the underlying causal structure. Shimizu et al. (2006) show 

that if causal sufficiency holds, the causal relations are linear, and the error distributions 

on the variables are non-Gaussian, then the causal structures can also be uniquely 

identified. A set of causal variables is related linearly when the value of each variable is 

determined by a linear function of the values of its parents plus an error term. Each error 

variable has a disturbance distribution, and as long as these distributions are not Gaussian 

(and not degenerate), then the same identifiability of causal structure is guaranteed as 

would be obtained by not making the assumptions about the causal relations, but instead 

running a set of single-intervention experiments. 

 

In either case, whether by strengthening assumptions or using experiments, the results 

rely on the assumption of causal sufficiency – that there are no unmeasured common 

causes. In many discovery contexts it is implausible that such an assumption is 

appropriate. Moreover, part of the rationale for randomized controlled trials in the first 



	
  

place was that a randomization makes the intervened variable independent of its normal 

causes, whether those causes were measured or not. Thus, if there is an unmeasured 

common cause u – a confounder – of x and z, then randomizing x would break the 

(spurious) correlation observed between x and z that is due to the confounder u. However, 

without the assumption of causal sufficiency, underdetermination returns despite the 

possibility of experiments. 

 

Figure 2 

 

 Structure 1      Structure 2  

 

 

In Figure 2, x, y and z are observed (and can be subject to intervention), while u and v are 

unobserved. If only causal Markov, faithfulness and acyclicity are assumed, the two 

causal structures in Figure 2 cannot be distinguished by any set of experiments that 

intervene on only one variable in each experiment (or by a passive observation). Since u 

and v are not observed, no variable is (conditionally) independent of any other variable 

under passive observation. The same is true when x is subject to an intervention, even 

though the surgical intervention would break the influence of u on x: x is not independent 

of z conditional on y, since conditioning on y induces a dependence via v (conditioning on 



	
  

a common effect makes the parents dependent). In an experiment intervening on y only, x 

and y are independent, but x and z remain dependent for both causal structures (because 

of u in Structure 2 and because of u and the direct effect xz in Structure 1). In an 

experiment intervening on z, the edge xz that distinguishes the two causal structures is 

broken, so both structures inevitably have the same independence and dependence 

relations. The problem is that no set of single-intervention experiments is sufficient to 

isolate the xz edge in Structure 1, and so the underdetermination remains. 

 

This underdetermination can, of course, be resolved: If one could intervene on x and y 

simultaneously, then x will be independent of z if the second structure is true, but 

dependent if the first is true. So, assuming only causal Markov, faithfulness and 

acyclicity, the two causal structures are experimentally indistinguishable for single 

intervention experiments, but distinguishable for double intervention experiments. 

 

How does this generalize to arbitrary causal structures? The resolution of the 

underdetermination of the causal structures in Figure 2 depended on an experiment that 

intervened on all but one variable simultaneously. This is true in general: Assuming 

causal Markov, faithfulness and acyclicity, but not causal sufficiency, there exist at least 

two causal structures over N variables that are indistinguishable on the basis of the 

independence and dependence structure for all experiments that intervene on at most N-2 

variables, where N is the number of observed variables. That is, at least one experiment 

intervening on all but one variable is necessary to uniquely identify the true causal 

structure. In fact, the situation is worse, because a whole set of experiments, each 



	
  

intervening on at least N-i variables, for each integer i in 0<i<n, is in the worst case 

necessary to ensure the underdetermination is resolved (see Appendix 1 for a proof). So, 

even when multiple simultaneous interventions are possible, a large number of 

experiments each intervening on a large number of variables simultaneously are 

necessary to resolve the underdetermination.   

 

Again, one need not pursue this route. One could instead strengthen the search space 

assumptions. Part of why single-intervention experiments were not sufficient to resolve 

the underdetermination of the causal structures in Figure 2 is that independence tests are a 

general, but crude tool of analysis. If one could separate the causal effect of the xyz 

pathway from the direct causal effect of xz in the structures in Figure 2, then the two 

causal structures could be distinguished. For linear causal relations this is possible, since 

so-called trek-rules specify that the correlation between two variables in a linear model is 

given by the sum-product of the correlations along the (active) treks that connect the 

variables. Suppose that the linear coefficient of the xy edge is a, of the yz edge is b 

and of the xz edge is c in Figure 2. If the second structure is true, then in an experiment 

that intervenes on x, we have cor(x,z) = ab, while if the first structure is true, then cor(x,z) 

= ab+c in the same experiment. We can measure the correlations and compare the result 

to the predictions: In an experiment that intervenes on y, we can determine b by 

measuring cor(y,z). In an experiment intervening on x, we can determine a by measuring 

cor(x,y), and we can measure cor(x,z). If cor(x,z)=cor(x,y)cor(y,z)=ab, then the second 

structure is true, while if the first structure is true, then cor(x,z)≠cor(x,y)cor(y,z), and we 

can determine c=cor(x,z)-cor(x,y)cor(y,z). Thus, on the basis of single-intervention 



	
  

experiments alone we are able to resolve the underdertermination. But we had to assume 

linearity. 

 

Eberhardt et al. (2010) show that this approach generalizes: if the causal model is linear 

(with any non-degenerate distribution on the error terms), but causal sufficiency does not 

hold, then there is a set of single-intervention experiments that can be used to uniquely 

identify the true causal structure among a set of variables. This results holds even when 

the assumptions of acyclicity and faithfulness are dropped. It shows just how powerful 

the assumption of linearity is. Linearity is sufficient to achieve identifiability even for 

single intervention experiments, but it is known not to be necessary. Hyttinen et al. 

(2011) have shown that similar results can be achieved for particular types of discrete 

models – so-called noisy-or models. It is currently not known what type of parametric 

assumption is necessary to avoid single-intervention experimental indistinguishability.  

 

However, there is a weaker result: Appendix 2 contains two discrete (but faithful) 

parameterizations, one for each of the causal structures in Figure 2 (adapted from 

Hyttinen et al. 2011). I refer to the parameterized model corresponding to the first 

structure as PM1 and that for the second structure as PM2. As can be verified from 

Appendix 2, PM1 and PM2 have identical passive observational distributions, identical 

manipulated distributions for an experiment intervening only on x, an experiment 

intervening only on y, and (unsurprisingly) for an experiment intervening only on z. That 

is, the two parameterized models are not only indistinguishable on the basis of 

independence and dependence tests for any single-intervention experiment or passive 



	
  

observation. They are indistinguishable in principle, that is, for any statistical tool, given 

only single-intervention experiments (and passive observation), because those 

(experimental) distributions are identical for the two models. This underdetermination 

exists despite the fact that all (experimental) distributions are faithful to the underlying 

causal structure. The models are, however, distinguishable in a double-intervention 

experiment intervening on x and y simultaneously. Only for such an experiment do the 

experimental distributions differ so that the presence of the xz edge in PM1 is in 

principle detectable. I do not know, but conjecture that this in-principle-

underdetermination (rather than just the underdetermination based on the (in-)dependence 

structure, as shown in Appendix 1) can be generalized to arbitrary numbers of variables 

and will hold for any set of experiments that at most intervene on N-2 variables.  

 

The example shows that in order to identify the causal structure by single-intervention 

experiments some additional parametric assumption beyond Markov, faithfulness and 

acyclicity is necessary. Alternatively, without additional assumptions, causal discovery 

requires a large set of very demanding experiments, each intervening on a large number 

of variables simultaneously. For many fields of study it is not clear that such experiments 

are feasible, let alone affordable or ethically acceptable. It is unclear how common cases 

like PM1 and PM2 are. It is possible that in practice such cases are quite rare. When the 

assumption of faithfulness was subject to philosophical scrutiny, one argument in its 

defense was that a failure of faithfulness was for certain types of parameterizations a 

measure-zero event (Spirtes et al. 2000, Thm 3.2). While this defense of faithfulness has 

not received much philosophical sympathy, such assessments of the likelihood of trouble 



	
  

are of interest when one is willing or forced to make the antecedent parametric 

assumptions anyway. The example here does not involve a violation of faithfulness, but a 

similar analysis of the likelihood of underdetermination despite experimentation is 

possible. 

 

PM1 and PM2 cast a rather dark shadow on the hopes that experiments on their own can 

provide a gold standard for causal discovery. They suggest that causal discovery, whether 

experimental or observational, depends crucially on the assumptions one makes about the 

true causal model. As the earlier examples show, assumptions interact with each other 

and with the available experiments to yield insights about the underlying causal structure. 

Different sets of assumptions and different sets of experiments result in different degrees 

of insight and underdetermination, but there is no clear hierarchy either within the set of 

possible assumptions, or between experiments and assumptions about the model space or 

parameterization. 

 

3. Interventionism 

On the interventionist account of causation, “X is a direct cause of Y with respect to some 

variable set V if and only if there is a possible intervention on X that will change Y (or the 

probability distribution of Y) when all other variables in V besides X and Y are held fixed 

at some value by interventions.” (Woodward 2003). The intuition is easy enough: In 

Figure 2, x is a direct cause of z because x and z are dependent in the double-intervention 

experiment intervening on x and y simultaneously.  

 



	
  

According to this definition of a direct cause it is true by definition that N experiments 

each intervening on N-1 variables are sufficient to identify the causal structure among a 

set of N variables even when causal sufficiency does not hold. (Above I only discussed 

necessary conditions.) If each of the N experiments leaves out a different variable from 

its intervention set, then each experiment can be used to determine the presence of the 

direct effects from the N-1 intervened variables to the one non-intervened one. Together 

the experiments determine the entire causal structure. 

 

An interventionist should therefore have no problem with the results discussed so far, 

since the cases of experimental underdetermination that I have considered were all 

restricted to experiments intervening on at most N-2 variables. The causal structures 

could always be distinguished by an experiment intervening on all but one variable.  

 

But there are unusual cases. In Appendix 3 I provide another parameterization (PM3) for 

the first causal structure in Figure 2 (the one with the extra xz edge). The example and 

its implications are discussed more thoroughly than can be done here in Eberhardt 

(unpublished). PM3 is very similar to PM1 and PM2.  In fact, for a passive observation 

and a single intervention on x, y or z they all imply the exact same distributions. 

However, PM3 is also indistinguishable from PM2 for a double-intervention experiment 

on x and y (and similarly, of course, for all other double-intervention experiments).  That 

is, PM3 and PM2 differ in their causal structure with regard to the xz edge, but are 

experimentally indistinguishable for all possible experiments on the observed variables.  

 



	
  

In what sense, then, is the direct arrow from xz in PM3 justified? After all, in a double-

intervention experiment on x and y, x will appear independent of z. Given Woodward’s 

definition of a direct cause, x is not a direct cause relative to the set of observed variables 

{x, y, z}. However, if one included u and v as well, x would become a direct cause of z, 

since x changes the probability distribution of z in an experiment that changes x and holds 

y, u and v fixed.  

 

So, the interventionist can avoid the apparent contradiction. The definition of a direct 

cause is protected from the implications of PM3 since it is relativized to the set of 

variables under consideration. But one may find a certain level of discomfort that this 

interventionist definition permits the possibility that a variable (x here)  

(i) is not a direct cause relative to V={x,y,z} 

(ii) is not even an indirect cause when y is subject to intervention and V={x,y,z} 

(iii) but is a direct cause relative to V*={x,y,z,u,v}.  

Unlike PM1, PM3 violates the assumption of faithfulness in the double-intervention 

distribution when x and y are manipulated simultaneously: in PM3 x is independent of z 

despite being (directly) causally connected.  

Violations of faithfulness have been recognized to cause problems for the interventionist 

account (Strevens 2008). In particular, when there are two causal pathways between a 

variable p and a variable q that cancel each other out exactly, then an intervention on p 

will leave p and q independent despite the (double) causal connection. But this case here 

is different: In the double-intervention distribution intervening on x and y that is crucial to 

determining whether x is a direct cause of z, there is only one pathway between x and z. 



	
  

Thus, we are faced here with a violation of faithfulness that does not follow the well-

understood case of canceling pathways. But like those cases, it shows that the 

interventionist account of causation either misses certain causal relations or implicitly 

depends on additional assumptions about the underlying causal model. The 

interventionist need not assume faithfulness. As indicated earlier the assumption of 

linearity guarantees identifiability using only single-intervention experiments even if we 

do not assume faithfulness. In other words, a linear parameterization of Structure 1 

cannot be made indistinguishable from a linear parameterization of Structure 2. 

 

Part of the appeal of the interventionist account is its sensitivity to the set of variables 

under consideration when defining causal relations. This helped enormously to 

disentangle direct from total and contributing causes. Examples like PM3 suggests that 

the relativity may be too general for definitional purposes unless one makes additional 

assumptions: I may measure one set of variables in an experiment and say there is no 

causal connection between two variables. You may measure a strict superset of my 

variables and intervene on a strict superset of my intervened variables and come to the 

conclusion that the same pair of variables stand in a direct causal relation. Moreover, the 

claim would hold when all the interventions were successfully surgical, i.e. breaking 

causal connections.  

The other part of the interventionist appeal was the apparent independence of the 

interventionist account from substantive assumptions such as faithfulness that have 

received little sympathy despite their wide application. This paper suggests that you 

cannot have both. 



	
  

Appendix 1:  

 

Theorem: Assuming only causal Markov, faithfulness and acyclicity, n experiments are 

in the worst case necessary to discover the causal structure among n variables. 

 

Proof: Suppose that every pair of variables in V is subject to confounding. Consequently, 

independence tests conditional on any non-intervened variable will always return a 

dependence, since they open causal connections via the unmeasured variables. 

Without loss of generality we can assume that the following about the causal hierarchy 

over the variables is known:  

 (x1, x2)>x3>...>xn.  

In words: The causal order between x1 and x2 is unknown, but they are both higher in the 

order than any other variable. To satisfy the order, there must (at least) be a path  

x3x4...xn-1xn  

Let an experiment E =(J, U) be defined as a partition of the variables in V into a set J and 

U=V\J, where the variables in J are subject to a surgical intervention simultaneously and 

independently, and the variables in U are not. 

Now note the following:  

The only experiments that establish whether x2x1 are experiments with x2 in J1 and x1 

not in J1. That is, x2 is subject to an intervention (with possibly other variables) and x1 is 

not. Select any one such experiment and call it E1=(J1, U1). 

Suppose that experiment E1 showed that x2 and x1 were independent, such that the 

ordering between x1 and x2 remains underdetermined.  



	
  

The only experiments that establish whether x1x2 are experiments E2 with x1 in J2 and 

x2 not in J2. 

Experiments E1 and E2 resolve the order between x1 and x2, suppose without loss of 

generality that it is x1x2. In the worst case this required two experiments. 

Now for the remainder:  

The only experiments that establish whether x1x3 are experiments E3 with x1 and x2 in 

J3 and x3 not in J3. Note that none of the previous experiments could have been an E3.  

The only experiments that establishes whether x1x4 are experiments E4 with x1, x2, x3 

in J4 and x4 not in J4. None of the previous experiments could have been an E4.  

.... 

The only experiments that establishes whether x1xn is an experiment En with x1,…,xn-

1 in Jn and xn not in Jn. None of the previous experiments could have been an En.  

It follows that n experiments are in the worst case necessary to discover the causal 

structure.  

QED. 

 

The above proof shows that in the worst case a sequence of n experiments is necessary 

that have intervention sets that intervene on at least n-i variables simultaneously for each 

integer i in 1<i<n. 

 



	
  

Appendix 2:  

 

Parameterization PM1 for Structure 1 in Figure 2 (all variables are binary) 

p(u=1)=0.5 
           
                  
p(v=1)=0.5 
                            
 
p(x=1|u=1)=0.8 
p(x=1|u=0)=0.2 
                            
 
p(y=1|v=1,x=1)=0.8 
p(y=1|v=1,x=0)=0.8 
p(y=1|v=0,x=1)=0.8 
p(y=1|v=0,x=0)=0.2 
 
 

p(z=1|u=1,v=1,x=1,y=1)=0.8 
p(z=1|u=1,v=1,x=1,y=0)=0.8 
p(z=1|u=1,v=1,x=0,y=1)=0.84 
p(z=1|u=1,v=1,x=0,y=0)=0.8 
p(z=1|u=1,v=0,x=1,y=1)=0.8 
p(z=1|u=1,v=0,x=1,y=0)=0.8 
p(z=1|u=1,v=0,x=0,y=1)=0.64 
p(z=1|u=1,v=0,x=0,y=0)=0.8 
p(z=1|u=0,v=1,x=1,y=1)=0.8 
p(z=1|u=0,v=1,x=1,y=0)=0.8 
p(z=1|u=0,v=1,x=0,y=1)=0.79 
p(z=1|u=0,v=1,x=0,y=0)=0.8 
p(z=1|u=0,v=0,x=1,y=1)=0.8 
p(z=1|u=0,v=0,x=1,y=0)=0.2 
p(z=1|u=0,v=0,x=0,y=1)=0.84 
p(z=1|u=0,v=0,x=0,y=0)=0.2 

 

 

Parameterization PM2 for Structure 2 in Figure 2 

p(u=1)=0.5 
p(v=1)=0.5 
                            
p(x=1|u=1)=0.8 
p(x=1|u=0)=0.2 
                         
p(y=1|v=1,x=1)=0.8 
p(y=1|v=1,x=0)=0.8 
p(y=1|v=0,x=1)=0.8 
p(y=1|v=0,x=0)=0.2 

                        
p(z=1|u=1,v=1,y=1)=0.8 
p(z=1|u=1,v=1,y=0)=0.8 
p(z=1|u=1,v=0,y=1)=0.8 
p(z=1|u=1,v=0,y=0)=0.8 
p(z=1|u=0,v=1,y=1)=0.8 
p(z=1|u=0,v=1,y=0)=0.8 
p(z=1|u=0,v=0,y=1)=0.8 
p(z=1|u=0,v=0,y=0)=0.2 

 

Passive observational distribution:  

PM1: P(X, Y, Z) = sum_uv P(U) P(V) P(X | U) P(Y | V, X) P(Z | U, V, X, Y) 

PM2: P(X, Y, Z) = sum_uv P(U) P(V) P(X | U) P(Y | V, X) P(Z | U, V, Y) 



	
  

 

Experimental distribution when x is subject to an intervention 

(I write P(A | B || B) to mean the conditional probability of A given B in an experiment 

where B has been subject to a surgical intervention) 

PM1: P(Y, Z | X || X) = sum_uv P(U) P(V) P(Y | V, X) P(Z | U, V, X, Y) 

PM2: P(Y, Z | X || X) = sum_uv P(U) P(V) P(Y | V, X) P(Z | U, V, Y) 

 

Experimental distribution when y is subject to an intervention 

PM1: P(X, Z | Y || Y) = sum_uv P(U) P(V) P(X | U) P(Z | U, V, X, Y) 

PM2: P(X, Z | Y || Y) = sum_uv P(U) P(V) P(X | U) P(Z | U, V, Y) 

 

Experimental distribution when z is subject to an intervention 

PM1: P(X, Y | Z || Z) = sum_uv P(U) P(V) P(X | U) P(Y | V, X) 

PM2: P(X, Y | Z || Z) = sum_uv P(U) P(V) P(X | U) P(Y | V, X) 

 

By substituting the terms of PM1 and PM2 in the above equations it can be verified that 

PM1 and PM2 have identical passive observational and single-intervention distributions, 

but that they differ for the following double-intervention distribution on x and y.  

 

Experimental distribution when x and y are subject to an intervention  

PM1: P(Z | X, Y || X, Y) = sum_uv P(U) P(V) P(Z | U, V, X, Y) 

PM2: P(Z | X, Y || X, Y) = sum_uv P(U) P(V) P(Z | U, V, Y) 

 



	
  

PM1 and PM2 (unsurprisingly) have identical distributions for the other two double 

intervention distributions, since the xz edge is broken and the remaining parameters are 

identical in the parameterizations: 

 

Experimental distribution when x and z are subject to an intervention  

PM1: P(Y | X, Z || X, Z) = sum_v P(V) P(Y | V, X) 

PM2: P(Y | X, Z || X, Z) = sum_v P(V) P(Y | V, X) 

 

Experimental distribution when y and z are subject to an intervention  

PM1: P(X | Y, Z || Y, Z) = sum_u P(U) P(X | U) 

PM2: P(X | Y, Z || Y, Z) = sum_u P(U) P(X | U) 

 

 



	
  

Appendix 3: 

 

Parameterization PM3 for Structure 1 in Figure 2 

  

p(u=1)=0.5 
           
                  
p(v=1)=0.5 
              
               
p(x=1|u=1)=0.8 
p(x=1|u=0)=0.2 
 
 
p(y=1|v=1,x=1)=0.8 
p(y=1|v=1,x=0)=0.8 
p(y=1|v=0,x=1)=0.8 
p(y=1|v=0,x=0)=0.2 
 
 

p(z=1|u=1,v=1,x=1,y=1)=0.825 
p(z=1|u=1,v=1,x=1,y=0)=0.8 
p(z=1|u=1,v=1,x=0,y=1)=0.8 
p(z=1|u=1,v=1,x=0,y=0)=0.8 
p(z=1|u=1,v=0,x=1,y=1)=0.775 
p(z=1|u=1,v=0,x=1,y=0)=0.8 
p(z=1|u=1,v=0,x=0,y=1)=0.8 
p(z=1|u=1,v=0,x=0,y=0)=0.8 
p(z=1|u=0,v=1,x=1,y=1)=0.7 
p(z=1|u=0,v=1,x=1,y=0)=0.8 
p(z=1|u=0,v=1,x=0,y=1)=0.8 
p(z=1|u=0,v=1,x=0,y=0)=0.8 
p(z=1|u=0,v=0,x=1,y=1)=0.9 
p(z=1|u=0,v=0,x=1,y=0)=0.2 
p(z=1|u=0,v=0,x=0,y=1)=0.8 
p(z=1|u=0,v=0,x=0,y=0)=0.2

 

Substituting the parameters of PM3 in the equations for the passive observational or any 

experimental distributions of PM1 in Appendix 2, it can be verified that PM2 and PM3 

are experimentally indistinguishable for all possible experiments on {x, y, z}. 

Nevertheless, it should be evident that in an experiment intervening on x, y, u and v, the 

difference between the bold font parameters will indicate that x is a direct cause of z. 
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